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Times Series Analysis of GPS Receiver Clock Envors to
Improve the Absolute Positioning Accuracy

Tae-Suk Bae" - Jay Hyoun Kwon?

Abstract

Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the
observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From
the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute
positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze
the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and
the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated
position error compared to the published coordinates is improved from £11.4 m to 9.5 m in 3D RMS.
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1. Introduction

With the successful adaptation of GPS (and upcoming
GNSS such as Galileo) for science and engineering, the
need to improve the GPS positioning accuracy has greatly
been increased. The analysis of GPS clock errors are
predominantly focused on the satellite clock error esti-
mation (Han et al., 2001; Oaks et al., 2005; Wright, 2007),
which is very stable compared to the receiver clock
errors. Generally speaking, the GPS clock errors can be
eliminated by doubly-differencing the measurements in-
volving two satellites and two receivers.

For the purpose of survey or navigation, however, the
absolute positioning technique is commonly used with
the one-way pseudorange measurements in the data pro-
cessing. In this case, only the position and the receiver
clock errors are usually estimated, while the ionospheric
delay is ignored and the model values are used for the
tropospheric delay. Therefore, depending on the measure-
ment noise, the receiver clock errors can be abruptly
increased and thus the position error gets worse ac-
cordingly. Since the receiver clock is relatively stable,
thus it may be possible to model its behavior and apply

to the absolute positioning.

In this study, the time series analysis of the GPS
receiver clock errors is presented along with its practical
application to real data. The basic theory of time series
is described in the following section. The estimated
receiver coordinates after constraining the receiver clock
errors to their model values are compared with those of
absolute positioning and the case of “true” receiver clock
errors. The model of the time differenced receiver clock
errors are checked for goodness of fit by plotting the
sample autocovariance function (ACF), and the Q-Q plot
for the normal distribution of the residuals.

2. Basic theory of time series

A time series is a set of observations x, each one being
recorded at a specific time (Brockwell and Davis, 2002).
The objective of the time series analysis is to find a
model that can explain the dependency between different
observations in time series data, and thus model the
residuals as stationary process. Since the observations are
usually made at discrete time epoch, especially in GPS

measurements, the discrete-time time series is always

1) Post-doctoral researcher, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University

(E-mail: bae.38@osu.edu)

2) Member, corresponding author, Associate Professor, Department of Geoinformatics, University of Seoul (E-mail: jkwon@uos.ac kr)

- 537 -



assumed in this study.

It is usually known that a time series model is a
specification of the probabilistic distribution of a sequence
of random variables (RVs), {X;: ¢t €Ty} where T is the
set of all possible time points. The RVs can be realized
as the observed series {x;}. The distribution of the times
series can be represented by the moments, therefore, the
means and covariances of the RVs need to be specified
in a time series model. The mean function of {X;} is
defined by

uy () =E(X,), M

where E(-) represents the expectation of the RVs. Ac-
cordingly, the variance and covariance function of {X;},

respectively, can be represented by

o1 (1) = var(x,) = E{(X, - 1, 0) |, @
Vi (s,0)= covar(X,, X,) = E{(X, - (D) (X, - s, (1))}
3

One of the important properties in time series analysis
is the stationarity of the RVs. The RVs {X;} is considered
as (weakly) stationary if

1) the mean i is constant and does not depend on
time, and

2) the covariance, covar(X, X:), is a finite constant
and does not depend on ¢ but &

where / is called the lag. If {X;} is stationary, the
covariance becomes the autocovariance function (ACVF),
that is,

7X(h) = Covar(Xu X1+h) = E{(Xr _/UX)(XHh —Hy )}9 (4)

and the corresponding autocorrelation function (ACF)
can be defined as

7x(B)

() =
P 7. (0)° (5)

2.1 The white noise process

Assuming E{X;}= u and Var{X,}IO2 < oo, then {Xi}
is a white noise or WN(4, 0% process if yx(h)=0 for
h=0. Therefore, the white noise process is stationary.

2.2 The moving average process
Let {Z} be a WN(O, ¢°) process, and & be some real-

valued constants. Then for each integer ¢, let

X, =Z,+6Z +-+60Z_,

cl 6
= Z 0,z ©
=0

where 6y=1. The sequence of RVs {X;} is called the
moving average process of order ¢. This MA(g) process

is a stationary time series model with g-correlated.

2.3 The autoregressive process

Let {Z:;} be a WN(0, 02) process, and {¢1, -+, ¢p} be
a set of constants for some integer p > 0 (¢, 0). Then
the autoregressive process of order p, AR(p), is defined
as the solution to the equation

?
Xz:z¢jXr—j+Zt- (7)
=1

2.4 Sample mean and autocovariance function

Let {X;} be a stationary process with mean ty and
autocovariance function §(-). Then the unbiased sample
mean can be represented as

X = X, ®

==
M=

t=1
and the sample autocovariance function (ACVF) (biased
but standard) for |2|<n is given by

n-|A] _ _
el = 3 (X, = DX,y = T, ©

=1

and the corresponding sample autocorrelation function
(ACF) is defined by
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7 (h)
B %(0) . (10

o(h)
If the process is independent and identically distributed
(IID) noise with finite variance, then the sample ACF

will follow a normal distribution with zero mean and
variance of 1/n, that is,

Ry~ N(o, %] (1)

Therefore, we can check the model by plotting p(%)
and draw two horizontal lines at £1.96 vn and see if

about 95% of the p(h) be within the lines if we have
IID noise.

3. Test data

For the time series analysis of the GPS receiver clock
errors, COLB station, one of the CORS (Continuously
Operating Reference Stations) located in Columbus, Ohio
(USA), is used. The receiver type installed in COLB is
Trimble NETRS with the elevation cutoff setting of 5
degrees. GPS data was collected on 18 September 2007
(day of year 261) for 24 hours with 30-second interval.
The published coordinates of COLB can be obtained
from the website of National Geodetic Survey (NGS) at
http://www.ngs.noaa.gov/CORS/. Table 1 shows the pub-
lished coordinates of the receiver at L1 phase center
(antenna offset from the reference point corrected) at
1997.0 along with its velocity in ITRFOO frame. The
receiver coordinates are further corrected for its velocity
to get the current position in the middle of observation
(noon 18 September 2007). The absolute point posi-
tioning routine is implemented in MATLAB and all the
times series analysis is performed in R. For further in-
formation on R, see the website of the R project for
Statistics Computing (http://www.r-project.org/).

The pseudorange measurement from the GPS satellite
is used to calculate the GPS receiver clock errors. The
GPS satellite orbits can be calculated using the broadcast
navigation message (Seeber, 2003; Remondi, 2004). The
tropospheric delay model used in this study is the modi-
fied Hopfield model and the ionospheric delay is usually

Table 1. The position and velocity of COLB station in
ITRFOO frame at epoch 1997.0.

Position [m] Velocity [m/yr]
X 592756.525 -0.0168
Y -4859703.434 -0.0017
VA 4074680.999 0.0009

ignored in absolute positioning. Therefore the pseudo-
range observation model can be expressed as (Hofmann-
Wellenhof et al., 2004)

PF=pf +TF +e(dt —dt) +e, 12
i p{ i 1

where

P : the pseudorange measurement in distance units;

p : the geometric range between the transmitter and
the receiver at the time of signal emission and
reception, respectively;

T : the tropospheric refraction;

¢ : the speed of light in vacuum;

dt : the clock error;

e : the measurement noise;

and the superscript represents the satellite, and the sub-
script the receiver. The satellite clock error can also be
obtained from the navigation message. If the precise
ephemeris data is used, the GPS satellite orbits as well
as the satellite clock error can be interpolated at the time
of transmission.

Figures 1 and 2 show the results of the absolute
positioning of COLB station on September 18, 2007, the
position and the receiver clock errors, respectively. The
receiver position (L1 phase center actually) is calculated
at each observation epoch and compared with the published
coordinates as mentioned above. As can be seen in the
figures, the receiver clock errors are highly correlated
with the calculated coordinate error of the receiver,
especially the UP component (not shown here). This is
mainly due to the neglected ionospheric delay, tropo-
spheric model error, and the random error of the pseu-
dorange measurement (C1 in this study). Therefore, the
idea is that once we can somehow model the behavior
of the receiver clock errors and/or eliminate the outliers,

then the absolute positioning error can be further improved.
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Fig. 1. The GPS receiver coordinates from absolute posi-
tioning.

Receiver clock offset [1e-8 s]
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Fig. 2. The GPS receiver clock errors.

4. Time Series Analysis of the Receiver
Clock Errors

A standard modet for times series can be represented
by

X, =m +s5,+Y,, (13)

where

m;: the trend component;
. . d
S¢ : a seasonal component with period d, str =0;

Y:: a random noise component with E{Y;} =0.

As can be seen in Figure 2, however, it is difficult
to specify the time series of the receiver clock errors
except the (upward) linear trend. This is because the GPS
receiver clock is relatively stable for short term, although
some shows a behavior of drift. Therefore, it is possible

to model the receiver clock errors with the trend and

Receiver clock offset [1e-8 s]
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Hour {18 September 2007)

(a) The receiver clock errors and its linear trend.

Residuals [te-8 5]
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I
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Hour (18 September 2007}
(b) The residuals after removing the linear trend.

Fig. 3. Estimation of the trend.

a seasonal component, neglecting the random noise
components from the absolute positioning.

The first step of the time series analysis is to plot the
data in order to check any abrupt changes in behavior
and/or outliers (Figure 2), and then estimate the trend.

The linear model is used in this study to fit the time
series data. According to Figure 3, there still have large
randomness in the residuals of the receiver clock errors.
Therefore, it is helpful to apply a filter to the residuals
for better understanding of the behavior. Based on the
assumption of the stable receiver clock, two hours of
moving average (MA) filter is applied to obtain the
smoothed residuals (Figure 4). As can be seen in the
Figure 4, the filtered residuals fairly pick up the trend
of each sub-interval through the time series with the zero
mean residuals. After the smoothing process, the sea-
sonality can be seen more clearly, although it does not
look like a perfect seasonality.

The second step is to fit the detrended residuals to
the harmonic model which is composed of sine and cosine
terms. From Figure 5, it can be seen that the fitted
harmonic model has much smaller amplitude compared
to the smoothed residuals. The estimated harmonic model
is given by
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Fig. 4. (Smoothed) Residuals after moving average (MA) filter.
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Fig. 5. The smoothed receiver clock errors and its harmonic model fit.

§,=0.110533 cos(271) - 0.181834sin(27¢)
+0.007114 [107%s]. (14)

Figure 6 shows the modeled receiver clock errors,
combining the linear trend and the seasonality.

Table 2 shows the results for three cases of absolute
positioning. The case 1 represents the standard absolute
positioning which estimates the receiver clock errors
along with the coordinates of the receiver. There are a
few meters of bias in each component and the 3D RMS
reaches about +11.4 meters which are commonly ex-
pected from the absolute positioning. The case 2 indi-
cates the results that the receiver clock errors are fixed
to their “true” values. The “true” values here mean that
they are computed from the absolute positioning by
constraining the receiver position to its published (close
to “true”) coordinates. It should not be real “true” be-

cause the pseudorange measurements have random errors
and the ionospheric and tropospheric delay terms are not
estimated as mentioned earlier. Therefore, even in this
case, the estimated receiver position has an error of about
+6.3 meters in 3D RMS. The third case that is em-
phasized in this study shows an estimation of the receiver
position by constraining the receiver clock errors to the
model as shown in Figure 6. Since the main component
of the model is the linear trend of the estimated receiver
clock errors, the biases of the Case 3 are very close to
the Case 1, while the variations are significantly de-
creased resulting in +£9.5 meters in 3D RMS.

It should be mentioned here that the time difference
of the receiver clock errors can be modeled as the auto-
regressive process that has a stationary and unique solu-
tion. This is because the dominant component of the
receiver clock errors is the linear trend, thus there re-
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Fig. 6. The modeled receiver clock errors.

Table 2. Comparison of the absolute positioning results.

X [m] Y [m] Z [m] 3D [m]

Mean 3629 5.821 2482

Case 1* Std. £3310 £6.437 +4.956
RMS 44912 £8.678 £5542 £11.409

Mean 3.430 2.092 0.563

Case 2%+ Std. £3.095 42,550 2673
RMS +4.620 +3.299 42.732 46.300

Mean 3.788 -5.708 2448

Case 3¥%* Std. 42,825 +4.121 £3.405
RMS +4.726 +7.040 44,193 49.460

*  Case 1: The receiver clock errors are estimated.

** Case 2: The receiver clock errors are fixed to their “true” values.
*** Case 3: The receiver clock errors are fixed to their “model” values.

mains a white noise process after detrending. Figure 7
shows the sample autocorrelation function (ACF) of the
differenced time series of the receiver clock errors after
eliminating the linear trend. The sample ACF of the
residuals of AR(2) model shows that the correlation of

which the lag is greater 0 is almost zero, although there

ACF
L 1 1 1

L

00 02 04 06 08 10

Lag

(a) The sample ACF of the residuals of AR(2) model.

are lags that are slightly outside the confidence intervals.
The Q-Q (theoretical quantiles versus sample quantiles)
plot can be used to evaluate a family of distributions
for the observation samples. In this case the normal Q-Q
plot is very close to a straight line except some outliners

due mostly to the observation errors.

Sample Quantiles
2
1

Theoretical Quantiles
(b) The Q-Q plot.

Fig. 7. The residuals of AR(2) model.
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5. Discussion and summary

For an improved GPS absolute positioning, the time
series analysis of the receiver clock errors is performed
in this study. Since the receiver clock is relatively stable
(of course it is much less accurate than the satellite
clock), the major component of the time series is mo-
deled as a linear trend, and some minor fluctuations are
estimated as harmonic series. This modeling is confirmed
by checking the residuals of the time differenced data,
which are modeled as AR(2) process. The residuals are
centered around zero and a Gaussian assumption for the
residual seems to be reasonable from the straight line
in the normal Q-Q plot, except some outliers coming
from the measurement noise and the mismodeling in the
absolute positioning. With the modeling of the receiver
clock error, the absolute positioning accuracy of the
receiver position is improved about £2 m in 3D RMS.

This study suggests that if the receiver clock errors
can be modeled using the one-way phase measurements
with more precise modeling of the ionospheric/tropo-
spheric delay it would be improved significantly. Also
the prediction or forecasting of the receiver clock errors
based on the time series analysis can be used for real

time application. The prediction of the time series and
its prediction errors computed using the times series up
to current time epoch should be investigated further in
future study.
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