• Title/Summary/Keyword: Time Series Forecast Analysis

Search Result 185, Processing Time 0.028 seconds

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis (한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.

  • PDF

Development of Urban Flood Warning System Using Regression Analysis (회귀분석에 의한 도시홍수 예보시스템의 개발)

  • Lee, BeumHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.347-359
    • /
    • 2010
  • A simple web-based flood forecasting system using data from stage and rainfall monitoring stations was developed to solve the difficulty that real-time forecasting model could not get the reliabilities because of assumption of future rainfall duration and intensity. The regression model in this research could forecast future water level of maximum 2 hours after using data from stage and rainfall monitoring stations in Daejeon area. Real time stage and rainfall data were transformed from web-sites of Geum River Flood Control Office & Han River Flood Control Office based MS-Excel 2007. It showed stable forecasts by its maximum standard deviation of 5 cm, means of 1~4 cm and most of improved coefficient of determinations were over 0.95. It showed also more researches about the stationarity of watershed and time-series approach are necessary.

A Study on the Change of Built-up Areas using Remote Sensing Data (원격탐사 자료를 활용한 시가화지역의 변화에 관한 연구)

  • Kim, Yoon-Soo;Jung, Eung-Ho;Ryu, Ji-Won;Kim, Dae-Wuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • This study was performed to analyze time series landuse pattern of urban areas and the change of the areas by using remotely sensed multiple sensors. The results were as follows. First, according to the result of time series analysis, most agricultural land has been changed into built-up areas by development work such as the land development or land readjustment project, arrangement of science parks or military facilities, and location of public establishment like government buildings. Second, if the expansion of built-up areas maintains the present scale and speed, it seems that a lot of parts of land would be changed into built-up areas, especially centering around agricultural land, so it is necessary to establish the plan for urban space. Third, I have synthetically collected the data of the project of urban development and systematically monitored the process of in expansion the built-up areas up to now (from the past). I hereby could lay the foundation that makes us scientifically forecast the direction of expansion in the built-up areas by the urban development in the future.

  • PDF

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

Mortality Characteristics and Prediction of Female Breast Cancer in China from 1991 to 2011

  • Shi, Xiao-Jun;Au, William W.;Wu, Ku-Sheng;Chen, Lin-Xiang;Lin, Kun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2785-2791
    • /
    • 2014
  • Aims: To analyze time-dependent changes in female breast cancer (BC) mortality in China, forecast the trend in the ensuing 5 years, and provide recommendations for prevention and management. Materials and Methods: Mortality data of breast cancer in China from 1991 to 2011 was used to describe characteristics and distribution, such as the changes of the standardized mortality rate, urban-rural differences and age differences. Trend-surface analysis was used to study the geographical distribution of mortality. In addition, curve estimation, time series modeling, Gray modeling (GM) and joinpoint regression were performed to estimate and predict future trends. Results: In China, the mortality rate of breast cancer has increased yearly since 1991. In addition, our data predicted that the trend will continue to increase in the ensuing 5 years. Rates in urban areas are higher than those in rural areas. Over the past decade, all peak ages for death by breast cancer have been delayed, with the first death peak occurring at 55 to 65 years of age in urban and rural areas. Geographical analysis indicated that mortality rates increased from Southwest to Northeast and from West to East. Conclusions: The standardized mortality rate of breast cancer in China is rising and the upward trend is predicted to continue for the next 5 years. Since this can cause an enormous health impact in China, much better prevention and management of breast cancer is needed. Consequently, disease control centers in China should place more focus on the northeastern, eastern and southeastern parts of China for breast cancer prevention and management, and the key population should be among women between ages 55 to 65, especially those in urban communities.

A Study on the Statistical Continuity of Electrical Construction Cost Index Applied Chain Method (전기공사비지수의 산정방식 변경에 따른 통계연속성 실증분석 연구)

  • Park, Houng-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • Electrical construction cost index is composed of the cost of albor and material. The producer price index is used to the cost of material. The Bank of Korea restructured the formation method and the basic period of the producer price index in 2013. Because fixed-weighted method can't faithfully reflect industrial structure changes. The weighted value and price index of fixed-weighted method is fixed on the basicp eriod. Electrical construction cost index is changed from fixed-weighted method to chain-weighted method in september 2014, because of these on the need. But the change of organization in formation method changes the weighted value. So there is the need of analysis about the statistical continuity of electrical construction cost index. This study is focused on the time series analysis between fixed-weighted and chain-weighted electrical construction cost index. We uses unit root test, cointegration test, regression analysis of long and short term equation, fitness for the estimation of static forecast as time series analysis. We verify that chain-weighted electrical construction cost index can be replaced to fixed-weighted construction cost index accounting analyses result. So users of it recognize that chain-weighted electrical construction cost index has statistical continuity.

Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport (항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로)

  • Yoon, Sung Wook;Jeong, Suk Jae
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2014
  • This study deals with capacity expansion planning of airport infrastructure in view of economic validation that reflect construction costs and social benefits according to the reduction of passengers' delay time. We first forecast the airport peak-demand which has a seasonal and cyclical feature with ARIMA model that has been one of the most widely used linear models in time series forecasting. A discrete event simulation model is built for estimating actual delay time of passengers that consider the passenger's dynamic flow within airport infrastructure after arriving at the airport. With the trade-off relationship between cost and benefit, we determine an economic quantity of conveyor that will be expanded. Through the experiment performed with the case study of Incheon international airport, we demonstrate that our approach can be an effective method to solve the airport expansion problem with seasonal passenger arrival and dynamic operational aspects in airport infrastructure.

Development of Real time Air Quality Prediction System

  • Oh, Jai-Ho;Kim, Tae-Kook;Park, Hung-Mok;Kim, Young-Tae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.73-78
    • /
    • 2003
  • In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran model running on distributed-memory parallel computers. The system is designed for air diffusion simulations with four-dimensional data assimilation. For regional air quality forecasting a series of dynamic downscaling technique is adopted using the NCAR/Penn. State MM5 model which is an atmospheric model. The realtime initial data have been provided daily from the KMA (Korean Meteorological Administration) global spectral model output. It takes huge resources of computation to get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and lkm). Parallel implementation of the realtime system is imperative to achieve increased throughput since the realtime system have to be performed which correct timing behavior and the sequential code requires a large amount of CPU time for typical simulations. The parallel system uses MPI (Message Passing Interface), a standard library to support high-level routines for message passing. We validate the parallel model by comparing it with the sequential model. For realtime running, we implement a cluster computer which is a distributed-memory parallel computer that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed parallel computers, we can build a dedicated realtime computer. The system also includes web based Gill (Graphic User Interface) for convenient system management and performance monitoring so that end-users can restart the system easily when the system faults. Performance of the parallel model is analyzed by comparing its execution time with the sequential model, and by calculating communication overhead and load imbalance, which are common problems in parallel processing. Performance analysis is carried out on our cluster which has 32 2-CPU nodes.

  • PDF

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.