Browse > Article
http://dx.doi.org/10.14248/JKOSSE.2022.18.2.075

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions  

Felix Isuwa, Wapachi (Nuclear Engineering Department, KEPCO International Nuclear Graduate School)
Aya, Diab (Nuclear Engineering Department, KEPCO International Nuclear Graduate School)
Publication Information
Journal of the Korean Society of Systems Engineering / v.18, no.2, 2022 , pp. 75-93 More about this Journal
Abstract
Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.
Keywords
Recurrent Neural Network (RNN); Long Short Term Memory (LSTM); Gated Recurrent Unit (GRU); Convolutional Neural Network (CNN); Machine Learning (ML); Best Estimate Plus Uncertainty (BEPU);
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 B. Mehlig, Machine learning with neural networks. 2021. doi: 10.1017/9781108860604.   DOI
2 M. I. Radaideh, C. Pigg, T. Kozlowski, Y. Deng, and A. Qu, "Neural-based time series forecasting of loss of coolant accidents in nuclear power plants," Expert Syst. Appl., vol. 160, p. 113699, Dec. 2020, doi: 10.1016/j.eswa.2020.113699.   DOI
3 J. Bae, G. Kim, and S. J. Lee, "Real-time prediction of nuclear power plant parameter trends following operator actions," Expert Syst. Appl., vol. 186, p. 115848, Dec. 2021, doi: 10.1016/j.eswa.2021.115848.   DOI
4 S. Racheal, Y. Liu, and A. Ayodeji, "Evaluation of optimized machine learning models for nuclear reactor accident prediction," Prog. Nucl. Energy, vol. 149, p. 104263, Jul. 2022, doi: 10.1016/j.pnucene.2022.104263.   DOI
5 S. O. Alketbi and A. Diab, "Identification of Flex Strategy Success Window for Extended SBO using BEPU and AI," p. 4, 2020.
6 A. Dokhane, A. Vasiliev, M. Hursin, D. Rochman, and H. Ferroukhi, "A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments," Nucl. Eng. Technol., vol. 54, no. 5, pp. 1804-1812, May 2022, doi: 10.1016/j.net.2021.10.042.   DOI
7 J. P. Gorton and N. R. Brown, "Defining the performance envelope of reactivity-initiated accidents in a high-temperature gas-cooled reactor," Nucl. Eng. Des., vol. 370, p. 110865, Dec. 2020, doi: 10.1016/j.nucengdes.2020.110865.   DOI
8 O. Marchand, J. Zhang, and M. Cherubini, "Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD)/nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phase-II," Nucl. Eng. Technol., vol. 50, no. 2, pp. 280-291, Mar. 2018, doi: 10.1016/j.net.2017.12.007.   DOI
9 P. K. Gyan and J. C. Jung, "Development of a Functional Complexity Reduction Concept of MMIS for Innovative SMRs," J. Korean Soc. Syst. Eng., vol. 17, no. 2, pp. 69-81, Dec. 2021, doi: 10.14248/JKOSSE.2021.17.2.069.   DOI
10 F. Randiki and J. C. Jung, "Concept Development of a Simplified FPGA based CPCS for Optimizing the Operating Margin for I-SMRs," J. Korean Soc. Syst. Eng., vol. 17, no. 2, pp. 49-60, Dec. 2021, doi: 10.14248/JKOSSE.2021.17.2.049.   DOI
11 "APR-1400 Design Control Document Tier 2." Aug. 2018.
12 B. M. Adams et al., "Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual," p. 331, 2014.
13 S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Comput., vol. 9, no. 8, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.   DOI
14 K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, "On the Properties of Neural Machine Translation: Encoder-Decoder Approaches." arXiv, Oct. 07, 2014. Accessed: Sep. 10, 2022. [Online]. Available: http://arxiv.org/abs/1409.1259
15 D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, Jun. 2012, pp. 3642-3649. doi: 10.1109/CVPR.2012.6248110.   DOI
16 S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back, "Face recognition: a convolutional neural-network approach," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 98-113, Jan. 1997, doi: 10.1109/72.554195.   DOI
17 M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, "Subject independent facial expression recognition with robust face detection using a convolutional neural network," Neural Netw., vol. 16, no. 5-6, pp. 555-559, Jun. 2003, doi: 10.1016/S0893-6080(03)00115-1.   DOI
18 A. Ghione, B. Noel, P. Vinai, and C. Demazi?re, "Uncertainty and sensitivity analysis for the simulation of a station blackout scenario in the Jules Horowitz Reactor," Ann. Nucl. Energy, vol. 104, pp. 28-41, Jun. 2017, doi: 10.1016/j.anucene.2017.02.008.   DOI
19 P. Mazgaj et al., "Demonstration of the E-BEPU Methodology for SL-LOCA in a Gen-III PWR Reactor," Reliab. Eng. Syst. Saf., p. 108707, Jul. 2022, doi: 10.1016/j.ress.2022.108707.   DOI
20 W. Chen, Q. Xiong, D. Wu, S. Ding, L. Qian, and Q. Wu, "Uncertainty analysis of HPR-1000 LOCA with probabilistic and deterministic methods," Prog. Nucl. Energy, vol. 146, p. 104174, Apr. 2022, doi: 10.1016/j.pnucene.2022.104174.   DOI
21 O. Marchand, J. Zhang, and M. Cherubini, "Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD)/nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phase-II," Nucl. Eng. Technol., vol. 50, no. 2, pp. 280-291, Mar. 2018, doi: 10.1016/j.net.2017.12.007.   DOI
22 J. Zhang, J. Segurado, and C. Schneidesch, "Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses," p. 19, 2011.
23 A. E. R. Mahmoud and A. Diab, "A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant," J. Korean Soc. Syst. Eng., vol. 16, no. 2, pp. 1-15, Dec. 2020, doi: 10.14248/JKOSSE.2020.16.2.001.   DOI
24 S. O. Alketbi and A. Diab, "A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence," J. Korean Soc. Syst. Eng., vol. 16, no. 2, pp. 97-109, Dec. 2020, doi: 10.14248/JKOSSE.2020.16.2.097.   DOI
25 International Electrotechnical Commission (2015) IEC 62279:2015 Railway applications Communications, signaling and processing systems - Software for railway control and protection systems.
26 C. Queral, J. Montero-Mayorga, J. Gonzalez-Cadelo, and G. Jimenez, "AP1000® Large-Break LOCA BEPU analysis with TRACE code," Ann. Nucl. Energy, vol. 85, pp. 576-589, Nov. 2015, doi: 10.1016/j.anucene.2015.06.011.   DOI
27 S. Bai, J. Z. Kolter, and V. Koltun, "Deep Equilibrium Models," p. 12.
28 US NRC, "Best-Estimate Calculations of Emergency Core Cooling System Performance, Regulatory Guide 1.157.," p. 20, 1989.