Development of Real time Air Quality Prediction System
Jai-Ho Oh', Tae Kook Kim', Hung Mok Park?, and Youngtae Kim®

'Department of Environmental Atmospheric Sciences, Pukyong National Univ., Busan, 608—737, Korea
2Department of Chemical Engineering, Sogang University, Seoul, 121-747, Korea
’Department of Computer Science and Engineering, Kangnung National Univ., Kangnung, 210-702, Korea

In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran
model running on distributed-memory parallel computers. The system is designed for air diffusion
simulations with four-dimensional data assimilation. For regional air quality forecasting a series of
dynamic downscaling technique is adopted using the NCAR/Penn. State MM5S model which is an
atmospheric model. The realtime initial data have been provided daily from the KMA (Korean
Meteorological Administration) global spectral model output. It takes huge resources of computation to
get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and 1km).
Parallel implementation of the realtime system is imperative to achieve increased throughput since the
realtime system have to be performed which correct timing behavior and the sequential code requires a
large amount of CPU time for typical simulations.

The parallel system uses MPI (Message Passing Interface), a standard library to support high-level
routines for message passing. We validate the parallel model by comparing it with the sequential model.
For realtime running, we implement a cluster computer which is a distributed-memory parallel computer
that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a
Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed
parallel computers, we can build a dedicated realtime computer. The system also includes web based GUI
(Graphic User Interface) for convenient system management and performance monitoring so that end-
users can restart the system easily when the system faults. Performance of the parallel model is analyzed
by comparing its execution time with the sequential model, and by calculating communication overhead
and load imbalance, which are common problems in parallel processing. Performance analysis is carried
out on our cluster which has 32 2-CPU nodes.

Key words : Realtime, Meso-scale, Downscaling, Air Quality, Dispersion, parallelization, MPI, Cluster

1. Introduction

Air quality prediction system is a numerical
model which is a Fortran program designed for air
quality simulations with four-dimensional data
assimilation. This paper discusses the parallel
implementation of air quality prediction system
for distributed-memory parallel computers.
Distributed-memory parallel computers are more
cost effective and scalable than conventional
shared — memory / vector parallel computers®”,

Corresponding Author ; Jai-Ho Oh, Department of
Environmental Atmospheric Sciences, Pukyong
National University, Busan 608-737, Korea

Phone : +82-51-620-6287

E-mail : jhoh@pknu.ac.kr

The parallel model we implement can also execute
on the shared-memory parallel computers. To
parallelize the model, we used MPI (Message
Passing Interface), a library to support high-level
routines for message passings). We validate the
parallel model by comparing it with the sequential
model. Performance of the parallel model is also
analyzed by comparing its execution time with the
sequential model. Performance analysis was
carried out on a PC cluster, a distributed-memory
parallel computer that links high-performance PCs
with high-speed interconnection networks.

2. Numerical Solution of Stiff Equations
of Chemical Kinetics in the Atmospheric
Dispersion Model

- 73 =

Human activities are a major force affecting the
chemical composition of the earth's atmosphere.
Carbon dioxide (CO;), methane (CH,), nitrons
oxide (N,O), and various chlorocarbons (CICs)
and (FCs) and VOS's are some important gases in
the atmosphere that affect also the composition of
ozone. The compositions of these gases are
modeled by the following chemical - transport
model.

%(pc..>+v'<pvc,->=V-rvci+s,+s.7 o

MS
5= Y Sa8E -8 -1,08¢ () (2)
m=1
Here, C; is the composition of the i-th chemical
species, S, is the emission strength of the i-th
chemical species emitted at the m-th location
(point or area source), §"; is the chemical
transformation rate of the i-th species, /" is the
turbulent eddy diffusivity tensor, & is the Dirac
delta function and (§ ,, 7 . ¢) is the location
of the m-th emission source. In the present
investigation, the velocity field v is determined
by solving the MMS, and Eq.(1) is solved in a
body-fitted coordinates to take care of the
complex terrain.
In the computational domain, Eq.(1) may be

rewritten as
0
Je —(pci)+a§ (pVC)+ a;(”wc)

llac lZaC IJ
{ V(g '+ :
4 n ag”

ZlaC 2zaC, By aC,
‘ +—{FJ_(aﬂ+ C)} 3)

e "ac'+g”ac'+g + %)

on ¢
+J_Si+J_S{

(pUC,)+

where gl are geometric factors determined by
the coordinate transformation relations.
Eq.(4) represents the convection - diffusion

process and Eq.(5) takes care of the chemical -

transformation. Eq.(4) is solved by a finite volume
method in a general curvilinear coordinates with
the adoption of MUSCL to reduce artificial
diffusivity. Perhaps, the most difficult part of the
numerical solution of the atmospheric dispersion
model lies in Eq.(5).

The equations of atmospheric chemical kinetics

are very stiff. The problem with stiff equations is
the severe limitation placed on the step size of an
explicit scheme due to stability, which forces the
use of an implicit scheme. The problem with the
implicit scheme, however, is that a Jacobian
matrix must be inverted at each time step. In the
present investigation, we consider an algorithm
that yields unconditionally stable, explicitly
computable method for a class of chemical
kinetics equations without requiring the use of a
Jacobian matrix.

Physical Domain

18, | Computational Domain

Ay

Fig.1. Schematic diagram of conversion physical
domain to computational domain

The above atmospheric dispersion model is
solved by employing the following splitting
scheme

PCY - (pCY"
At

(PC)™ - (pC))’
4 =5 5
AL i)
The chemical kinetics for the i-th species may
be written as

=V-(vC)=V-TVC +5, (4)

% =R (y,0)= F!(y,t)-l(y,t)y, ~L(y.0)y}(6)

where Pi(y,) is the matrix representing the
generation of the i-th species and, L and I are
diagonal matrices representing the destruction of
the i-th species. When the nonlinear terms L(y,1)y’
are absent, the algorithm is given by

n+l = (yn-H) =y +At(Pn Ln n+l (7)

where P"and i,:' are evaluated at the previous
time step n Solving Eq.(7) for _ n+1, we find

i

-74 -

nel _ y; +Ag"

which has a first order accuracy in Af. We may
repeat the above calculation as follows.

n+lys - }’1" +At(1n+l)‘—l
™) mgw)m—)]

where s is the iteration number. For the case
where the second-order term J is included, the
algorithm is generalized to:

ntl).s = A+B

i ZAI(Z:”I) s-1 (10)
where
A=_(1+At(l:+l)s—l) (11)

B=J(1+AI(M—l):-l)Z +4At(z:'”)l-l(yiu +At(P‘<M'I)'-l
(12)

To test the accuracy of the above algorithm, we
consider a chemical kinetics involving the
following 9 species.

0,0,,0H,H0,,H,0,,N,,0,,H,0,0(D) (13)

The results of the present algorithm are
compared with those from an implicit scheme for
stiff equations and reveals that the present
algorithm yields reasonably good results at a
decent amount of computer time. Figure 2 shows
the diurnal variation of HO, in this model problem
and the error of the present algorithm with respect
to the exact implicit stiff algorithm such as the
Newton-Raphson method. The present algorithm
has been successful implemented in the three-
dimensional atmospheric dispersion model of
Eq.(3), where the model for the chemical kinetics
is based on RADM?2 treating 63 chemical species
with 155 chemical reactions.

3. Parallelization of Air—Chemistry

Model

The parallel implementation of Air-Chemistry
Model uses MPI (Message Passing Interface)
which is a standard library for message passing"a).
In this section, we describe parallelization of Air-
Chemistry Model with MPL

Wc! HO2 Plot
3.E+07

2.E+07 |
2.E+07 |
1.E+07 |
5.E+08
0.6+00 Lottt

HO2:Rel. Diff. Stiff-solver

Ditf
0.4
0.08
0.08
0.04

0.02

Haur

Fig.2. The diurnal variation HO2 (Mol) and
differences with resnect to stiff-solver.

3.1 Data mapping

The parallel Air-Chemistry Model does not
decompose the three-dimensional domain onto
processors, but each processor computes the
allocated data area out of the whole domain.
Figure 3 shows the data mapping of an example of
using four processors.

Py P,

/ ; s

P) Pﬂ

Fig.3. The data mapping

In the figure, each processor computes only the
dark area which is allocated to itself. This
mapping has same effect as the one-dimensional
domain decomposition. Initially all processors
have same data, and as computations proceed all
processors have different data since each
processor computes its own data area. Since the

.~ 75 -

parallel] Air-Chemistry Model does not require
frequent data exchanges between processors, this
mapping can significantly reduce communication
overheads?.

3.2 Parallelization

We separate the Air-Chemistry Model code into
two different parts for parallelizing. In the first
part computations on each grid point are done
independently upon the other grid points so that
parallelism exists based on the domain

decomposition. The second part, on the other hand,

has data dependency so that it requires data
exchanges between processors. Figure 4 shows the
structure of the code.

"

&
First part

:

Second part
(Data dependency
calculations)

Time steps

Output

End

b

Fig.4. Program structure

The first part includes intensive computations to
simulate chemical activities. The execution profile
of the sequential model shows that the first part
takes 97% of total execution time. Since we use
one-dimensional domain decomposition, we
modified the inner-most loop index (underlined)
in the code as follows.

In the parallel code on the right hand side, istart
and iend are local indices which are different on
all processors. For example, if we use four

processors and the imax value is 34, local index

values on each processor is shown Table 1.

The second part computations have data
dependency with the following code as an
example.

con(i,3,2)=con(i+1,3,2)-con(i-1,3,2)

To calculate the variable con, each processor
except boundary processors has to get data from
processors in the left and the right respectively.

Since computation of the second part takes only
7% of total execution time, we use gather and
broadcast instead of data exchange between
processors. After gather, all processors can
calculate the above calculation since they already
have required data in the whole domain. On the
same domain, all processors do same calculations.
In fact, there is no parallelism in the second part,
however that does not effect on performance since
the part is very small portion of all computations.
Figure 5 shows the sub-domain calculations of the
parallel program on each processor.

do k=1,kmax do k=1, kmax
do j=1,jmax do j=1,jmax
do i=1, imax do i=istart iend
call envire call enviro
call knair call knair
call chemis call chemis
end do end do
end do end do
end do end do

Table 1. Local indices on 4 processors

Processor istart iend
P, 1 9
P, 10 18
P, 19 27
P 28 34

4. Performance Analysis

The parallel code shows that its output is
matched within numerical error the output of the
original sequential code. In this section, we
present performance evaluation based on various
analysis.

4.1 Performance evaluation

The PC cluster which we tested the codes
consists of 4 single Pentium III PCs and 1 dual
CPU Pentium III PC. Table 2 shows the hardware
and software of the cluster.

Figures 6 shows execution time on a 34x29x15
grid on different number of processors. We run the
sequential model on a 450MHz CPU PC. In the
figure, using 6 (and 8) processors means 4
processes on 4 single 450 MHz CPUs and 2 (and

-76 ~

4) processes on 1 dual 1GHz CPU. The
comparison is fairly reasonable since the dual
CPU is about twice faster than the single CPU.

The parallel execution on the dual CPU PC
utilizes a characteristic of shared-memory
architecture so that there is no explicit data
communication but data exchange through the
system bus. Figure 7 compares the execution time
on the dual CPU PC. Execution time excludes the
file I/O and message displaying time.

The results from the parallel model show good
speedups over the sequential model. In Figure 6,
for instance, the parallel model on 8-processor
Cluster reduces CPU time from 64 minutes using
the sequential model into less than 15 minutes
with 14,790 grid points (34x29x15).

First Part

Table 2. Hardware and software of the cluster

Hardware Software
4 x 450MHz Main 512
single CPU | memory | MB 0s E'B:IE{E
Cache 512
memory | KB
1 x 1GHz Main MPI
dual CPUs | memory PGB | b MP,ICE
Cache 512
memory KB
. Intel TS10 100
Switch hub Mbps

Py

—

P;

Second Part

Py

Fig.5. Sub-domain on each processor

= 77 =

5000

3000 |
2000 A
1000 4

0 v Y Y v 1

1 2 3 4 6 8
Number of processes

Time (sec)

Fig.6. Comparison of execution time

2000
1500
3 1000
500
0 Y]
1 2
Number of processes

Fig. 7. Comparison of execution time on a dual
CPUPC

5. Conclusion

We described el implementation of Air-
Chemistry Model for distributed memory parallel
computers. For the best efficiency, the
parallelization of the model uses whole domain
calculation instead domain decomposition. MPI
supports parallelization of the model in a machine
independent manner. We have validated the
parallel model by comparing it to the sequential
code using field data. To show the efficiency of
parallel model, we have presented performance
analysis. The performance analysis explains why
our parallel Air-Chemistry model runs efficiently,
and the parallel model shows good speedups
compared to the ideal speedups that gives the
maximum throughput.

References

1) G. Agrawal, A. Sussman and J. Saltz, An
Integrated Runtime and Compile-Time Approach
for Parallelizing Structured and Block Structured
Applications, IEEE Transactions on Parallel and

Distributed Systems, Vol. 6, No. 7, pp. 747-754,
July 1995.

2) J. Ambrosiano, J. Bolstad, A. Bourgeois, J.
Brown, B. Chan, W. Dannevik, P. Eltgroth, B.
Grant, C. Matarazzo, A. Mirin, D. Shumaker,
and M. Wehner,, High-Performance Climate
System Modeling using a Domain and Task
Decomposition Message-Passing Approach, Proc.
1994 Scalable High-Performance Computing
Conf., IEEE, pp. 397-405, 1994.

3) V. Bala, J. Bruck, R. Cypher, P. Elustonodo, A.
Ho, C. Ho, S. Kipis, and M. Snir, CCL: A
Portable and Tunable Collective Communication
Library for Scalable Parallel Computers, IEEE
Transactions on Parallel and Distributed Systems,
Vol. 6, No. 2, pp. 154-163, Feb. 1995.

4) G. Fox, Solving Problems on Concurrent
Processors VI, Englewood Cliffs, New Jersey:
Prentice-Hall, 1988.

5) T. Huntsberger, Distributed Algorithm for Two-
Dimensional Global Climate Modeling, Proc.
1994 Scalable High-Performance Computing
Conf., IEEE, pp. 392-396, 1994.

6) K. Johnson, J. Bauer, G. Riccardi, K.
Droegemeier, and M. Xue, Distributed
Processing of a Regional Prediction Model, Mon.
Wea. Rev., 122, 2558-2572, 1994.

7) Y. Kim, Z. Pan, E. Takle, and S. Kothari, Parallel
Implementation of Hydrostatic MMS5 (Mesoscale
Model), The 8th SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

8) P. Pacheco, Parallel Programming with MPI,
San Francisco, CA: Morgan Kaufmann, 1997.

‘78‘

