• Title/Summary/Keyword: Time Phase

Search Result 8,415, Processing Time 0.033 seconds

3-Phase RMS Voltage Measurement Method of Virtual Frequence using Instantaneous Power Component Concept (순시전력 합성 개념을 이용한 가상주파수 3상 실효전압 계측기법)

  • Park, Seong-Mi;Yang, Ji-Hoon;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • This paper proposes a new measurement method using virtual power concept to measure the effective value of 3-phase voltage with variable frequency. The conventional effective value measurement method uses a method of integrating data sampled during one or half cycle of the power voltage and averaging it. In this method, since the effective voltage is calculated every cycle, a time delay occurs in the measured effective voltage and it is s a problem to measure the effective value of a device whose frequency varies from time to time, such as a generator. The proposed 3-phase voltage rms measurement method has an advantage that it can measure accurate voltage RMS value regardless of measurement frequency variation. In particular, there is an advantage in that it is possible to measure a 3-phase effective voltage rather than an average value of the effective voltage of each phase in a 3-phase unbalance voltage. In addition, the validity of the proposed method is verified by using the Psim simulation tool and the experimental results are analyzed by applying the proposed measurement algorithm to the actual three phase synchronous generator voltage measurement experiment.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

Influence of Liquid-Phase Amount on the Microstructure and Phase Transformation of Liquid-phase Sintered Silicon Carbide (액상량이 탄화규소 소결체의 미세구조 및 상변태에 미치는 영향)

  • 이종국;강현희;박종곤;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.413-419
    • /
    • 1998
  • ${\beta}$-silicon carbides with yttrium aluminum garnet of 2,5,10 mol% were prepared by a liquid--phase sint-ering and the microstructural evolution and phase transformation were investigated during sintering as functions of liquid-phase amount and sintering time. The rate of grain growth decreases with the addition of the amount of yttrium aluminum garnet (YAG) in the SiC starting powder however the apparent density and the aspect ratio of grains in sintered body increase. The phase transformation from ${\beta}$-SiC to ${\alpha}$-SiC were dependent on the liquid-phase amount and sintering time.

  • PDF

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0

  • Seong, Kihwan;Lee, Won-Cheol;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.352-358
    • /
    • 2016
  • A 5-phase phase-locked loop (PLL) for USB2.0 applications was implemented by using an all-synthesis technique. The length of the time-to-digital converter for the fine phase detector was halved by the operation of a coarse phase detector that uses 5-phase clocks. The maximum time difference between the rising edges of two adjacent-phase clocks was 6 ps at 480 MHz. The PLL chip in a 65-nm process occupies $0.038mm^2$, consumes 4.8 mW at 1.2 V. The measured rms and peak-to-peak output jitters are 8.6 ps and 45 ps, respectively.

A Kinematical Analysis of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 운동학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.49-63
    • /
    • 2003
  • For this study, four male university Taekwondo players were randomly chosen, between the weight categories of 60Kg and 80Kg. Their side kicks (yeop chagi), which are part of foot techniques, were kinematically analyzed in terms of the time, angle, and angular velocity factors involved with the kicks through the three-dimensional imaging. The results of the analysis are as fellows. 1. Time factor The first phase(preparation) was 0.48sec on average, accounting for 60% of the entire time spent; the second phase(the minimum angle of the knee joint) was 0.21sec on average, taking up 26% of the whole time spent; and the third phase(hitting) was 0.11sec on average, representing 14% of the entire time spent. 2. Angle factor In the first phase(preparation), rotating their bodies along the long axis, the players bended their hip and knee joints a lot, by moving fast in the vertical and horizontal directions, in the second phase(the minimum angle of the knee joint), the players continued to extend their bodies along the vertical axis, while pronating their lower legs and bending their hip and knee joints a lot to reduce the radius of gyration, and in the third phase(hitting), they extended their knee joints greatly so that the angle movements of their lower bodies shifted to circle movements. 3. Angular velocity factor In the first phase(preparation), the angular velocity of the hip and knee joints increased. while moving horizontally and rotating the body along the long axis; in the second phase(the minimum angle of the knee joint), the angular velocity increased by bending the hip and knee joints fast to reduce the rotation radios; and in the third phase(hitting), the angular velocity was found to have increased, by rotating the body along the long axis to increase the angular velocity and shifting the angular momentum of the pronated knee joint to the circular momentum.

Characteristics of the Yeongwol Earthquake based on the phase analysis (파형분석에의한 영월지진의 특성)

  • 김우한
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.67-76
    • /
    • 1997
  • The seismic records of the main shock and two after shocks of the Yeongwol Earthquake are studied based on the phsase analysis. The travel time curves with 12 different possible phases are constructed to analysis the phases of the records. which were provided by KIGAM seismic network. The results of phase analysis show that 1) The main shock (Ms=4.5) shows clear Pn phase but two after shocks (Ms=4 and Ms=2.5) do not show Pn phase. 2) The Pg or PmP phases look as first arrival phase in the after shock records whose edicental distance is smaller or larger than 150 km. 3) It is very difficult to identity the phases related to the Conrad discontinuity even if the Conrad discontiuity arrival exists. 4) The record of GRE station located outside of the Kueongsan Basin shows different arrival time of Pn phase, P-S duration time and frequency compared with those of the other stations located within the Kyeongsan Basin.

  • PDF

Pull-in Characteristics of Delay Switching Phase-Locked Loop (Delay Switching PLL의 Pull-in 특성)

  • 장병화;김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 1978
  • A delay switching PLL (DSPLL) is proposed for improvement of the frequency acquisition Performance (pull-in range) while keeping a narrow bandwidth LPF. It has, between the phase detector and the LPF, just a simple RC delay circuit, a switch and another phase detector controlling the switching time. For the common second order PLL, the pull-in capability of the DSPLL is analyzed approximately, without considering additive white noise effect, and verified experimentally. It is shown that the delay switching extends the pull-in range significantly, as much as a half of lock-range. At the phase tracking mode, the delay switching does not function, to make the DSPLL be a normal PLL.

  • PDF

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

A Study on Configuration of True Time Delay Phase Shifter for Wideband Beam Steering Phased Array Antenna (광대역 빔 조향을 위한 위상 배열 안테나의 실시간 지연 위상 천이기 구성에 관한 연구)

  • Jung, Jinwoo;Ryu, Jiho;Park, Jaedon;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.413-420
    • /
    • 2017
  • We investigate the performance of a true time delay(TTD) phase shifter to reduce the beam squint caused by frequency changes of a phased array antenna in wideband communication systems. To design a high gain phased array antenna, we need a long TTD, which causes high RF loss, low resolution and large dimension of TTD phase shifters. To overcome the problems, we propose a schematic of dual TTD phase shifters, which consists of short time delay(STD) in radio frequency(RF) part and long time delay(LTD) in intermediate frequency(IF) part. Our analysis results show that the proposed scheme reduces the required bits and delay time in RF band of the TTD compared to the conventional single TTD scheme.

Time Difference of the COP Displacement according Obstacle Height during Obstacle Crossing in Older Adults (노인의 장애물 보행 시 장애물 높이에 의한 압력중심 이동시간의 차이)

  • Park, Seol;Kim, Kyoung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the difference in the center of pressure (COP) displacement time in older adults according to the obstacle height during stance at each sub.phase when crossing obstacles. Methods: Fifteen older adults were enrolled in this study (${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when crossing a 0, 10 and 40cm obstacle, and the stance phase was divided into 4 sub-phases according to the foot contact pattern. Results: During the stance phase, the COP displacement time increased with increasing obstacle height. During the mid-stance, terminal stance and pre-swing except for the loading response, there were significant differences in the COP displacement time according to the obstacle height. Conclusion: This study suggests that older adults show differences in the COP displacement time according to the stance sub-phase while crossing obstacles, and they use different mechanisms according the sub-phases to maintain balance during obstacle crossing.