• Title/Summary/Keyword: Time Factor Model

Search Result 1,936, Processing Time 0.035 seconds

Active Effect of Antivoagulant Effects in chaenomelis Fructus Water Extract (모과 추출물의 항응혈 활성)

  • Yoo, Ji-Hyun;Han, Sin-Hee;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.7-11
    • /
    • 2009
  • Objectives : This research was investigated anticoagulant effect of the Chaenomelis Fructus extract. Methods : To examine an active effect of anticoagulation in Chaenomelis Fructus extract, the study measured Prothrombin time(PT) and activated partial thromboplastin time (APTT) of human plasma in vitro and measured bleeding time and arterio-venous shunt model in rats in vivo. Results : Bleeding time of Chaenomelis Fructus extract in vivo had a significant increase as about 1.6 times and thrombus weight of Chaenomelis Fructus extract had a significant reduction of thrombus weight as 50%. Chaenomelis Fructus extract represented an effect of anticoagulation by operating on extrinsic pathway factor II, V, VII, X and intrinsic pathway factor VIII, IX, X, XI, XII in the coagulation system. Conclusions : Considering the above mentioned results, it is judged that a Chaenomelis Fructus extract has a control effect of thrombus creation.

An Adaptive Vendor Managed Inventory Model Using Action-Reward Learning Method (행동-보상 학습 기법을 이용한 적응형 VMI 모형)

  • Kim Chang-Ouk;Baek Jun-Geol;Choi Jin-Sung;Kwon Ick-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.27-40
    • /
    • 2006
  • Today's customer demands in supply chains tend to change quickly, variously even in a short time Interval. The uncertainties of customer demands make it difficult for supply chains to achieve efficient inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. Un this paper, we propose an adaptive vendor managed inventory (VMI) model for a two-echelon supply chain with non-stationary customer demands using the action-reward learning method. The Purpose of this model is to decrease the inventory cost adaptively. The control Parameter, a compensation factor, is designed to adaptively change as customer demand pattern changes. A simulation-based experiment was performed to compare the performance of the adaptive VMI model.

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Stable PID Tuning for High-order Integrating Processes using Model Reduction Method (모델축소를 이용한 고차계 적분공정의 안정한 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2010-2016
    • /
    • 2007
  • PID control is windely used to control stable processes, However, its application to integrating processes is less common. In this paper, we proposed a stable PID controller tuning method for integrating processes with time delay using model reduction method. For proposed model reduction method, it disconnect an integrating factor from integrating processes and reduces separate process using reduction method. and it connect an integrating factor to reduced model. We can obtain stable integrating processes using P controller in inner feedback loop and PID tuning is then used to cancel the pole of the feedback loop. This guarantees both robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method comparing with other methods.

Nonparametric test for cointegration rank using Cholesky factor bootstrap

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.587-592
    • /
    • 2016
  • It is a long-standing issue to correctly determine the number of long-run relationships among time series processes. We revisit nonparametric test for cointegration rank and propose bootstrap refinements. Consistent with model-free nature of the tests, we make use of Cholesky factor bootstrap methods, which require weak conditions for data generating processes. Simulation studies show that the original Breitung's test have difficulty in obtaining the correct size due to dependence in cointegrated errors. Our proposed bootstrapped tests considerably mitigate size distortions and represent a complementary approach to other bootstrap refinements, including sieve methods.

Application of Fracture Toughness for Scaled Model Test (파괴인성의 축소모형실험 적용 연구)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2020
  • Fracture toughness of rock is a constant that can indicate the initiation and propagation of cracks due to blasting, excavation, etc. Scaled model tests have been applied to the behavior of tunnels and the stability of limestone mines. Through the scaled model, damaged zone evaluation due to blasting is also carried out, and the scale factor is not applied to the failure-related factors. In this study, DCT (diametral compression test) and finite element method ATENA2D numerical analysis results were compared to determine whether the scale factor could be applied to the fracture toughness of rock. The theoretical values of the scale factor applied to the fracture toughness of the rock and the DCT test results and the numerical results are 0.21~0.46, 0.40, and 0.99MPa ${\sqrt{m}}$ respectively, so these three values should be considered when determining scale factor. It is necessary to derive a suitable scale factor in consideration of the length, time, and mass to which the scale factor is applied, as well as the values of the scale factor of major design factors such as uniaxial compressive strength and density.

A Two Factor Model with Mean Reverting Process for Stochastic Mortality (평균회귀확률과정을 이용한 2요인 사망률 모형)

  • Lee, Kangsoo;Jho, Jae Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.393-406
    • /
    • 2015
  • We examine how to model mortality risk using the adaptation of the mean-reverting processes for the two factor model proposed by Cairns et al. (2006b). Mortality improvements have been recently observed in some countries such as United Kingdom; therefore, we assume long-run mortality converges towards a trend at some unknown time and the mean-reverting processes could therefore be an appropriate stochastic model. We estimate the parameters of the two-factor model incorporated with mean-reverting processes by a Metropolis-Hastings algorithm to fit United Kingdom mortality data from 1991 to 2015. We forecast the evolution of the mortality from 2014 to 2040 based on the estimation results in order to evaluate the issue price of a longevity bond of 25 years maturity. As an application, we propose a method to quantify the speed of mortality improvement by the average mean reverting times of the processes.

Development of a Workload Assessment Model for Overhead Crane Operation (천장 크레인 운전 작업부하 평가모델 개발)

  • Kwon, O-Chae;Lee, Sang-Ki;Cho, Young-Seok;Park, Jung-Chul;Jung, Ki-Hyo;You, Hee-Cheon;Han, Sung-H.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.45-59
    • /
    • 2007
  • The operating tasks of overhead crane have caused undue stress to the operators from physical, mental, and environmental workload. Existing workload assessment models for musculoskeletal disorders such as OWAS, RULA, and QEC have limited applicability to the crane operating tasks because they focus mainly on physical factors and do not consider the relative importance of each factor. The present study was to develop a workload assessment model customized to overhead crane operation, following a systematic process: (1) analyzing task characteristics, (2) selecting workload factors, (3) developing assessment methods, (4) establishing action levels, and (5) computerizing the assessment model. Based on literature review, worksite survey, and focus group interview, 4 physical factors (awkward posture, static posture, repetitive motion, and excessive force), 6 mental factors (visual demand, auditory demand, task complexity and difficulty, time urgency, work schedule related stress, and safety related stress), and 4 environmental factors (noise, vibration, dust, and temperature) were selected and their rating scales and relative weights were determined. Then, based on the workload assessment results of 8 overhead cranes operated at different workplaces, the action levels of each factor category were established. Finally, the crane operation assessment model was computerized for effective analysis and report preparation. The present approach is applicable to develop a customized workload assessment model for an operating task under consideration.

A Modified IMC-PID Controller Design Considering Model Uncertainty (모델 불확실성을 고려한 변형된 IMC-PID 제어기 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.128-130
    • /
    • 2005
  • This paper proposes a modified IMC-PID controller that introduces controlling factor of the system identification to the standard IMC-PID controller in order to meet the design specifications such as gain, phase margin and maximum magnitude of sensitivity function in the frequency domain as well as the design specifications in time domain, settling, rising time and overshoot, and so on.

  • PDF

Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption (수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF