• Title/Summary/Keyword: Time Delay Error

Search Result 635, Processing Time 0.028 seconds

Scheme of Secure IoT based Group communication (확장성과 보안을 보장하는 IoT 디바이스 기반의 그룹통신 기법)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.98-103
    • /
    • 2021
  • In this study, we propose a group communication technique that guarantees security and expandability by configuring a network consisting of IoT terminals equipped with security functions. As the number of devices participating in the network increases, network resources are proportionally reduced, and adding a security function to the IoT device increases the delay time due to encryption in the IoT device. If the error rate that occurs in the network increases, network resources are quickly consumed due to retransmission. Therefore, IoT terminals are grouped to ensure scalability while supporting security, reducing the consumption of network resources even when the number of participating nodes increases, thus ensuring scalability. For the future implementation, the encryption method used in IoT terminals considered the standard of IEEE802.5.4, and the standardization trend was investigated and classified. The proposed method applies IoT devices that provide security functions of the IEEE802.5.4 standard to the group communication base to ensure reliability and scalability. In the performance evaluation, the effectiveness of the proposed method was confirmed by comparing the delay times when grouping IoT devices with security functions through simulation.

DATUM PROBLEM OF NETWORK-BASED RTK-GPS POSITIONING IN TAIWAN

  • Yeh, Ta-Kang;Hu, Yu-Sheng;Chang, Ming-Han;Lee, Zu-Yu;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.90-94
    • /
    • 2007
  • The conventional single-reference station positioning is affected by systematic errors such as ionospheric and tropospheric delay, so that the rover must be located within 10 km from the reference station in order to acquire centimeter-level accuracy. The medium-range real-time kinematic has been proven feasible and can be used for high precision applications. However, the longer of the baseline, the more of the time for resolving the integral ambiguity is required. This is due to the fact that systematic errors can not be eliminated effectively by double-differencing. Recently, network approaches have been proposed to overcome the limitation of the single-reference station positioning. The real-time systematic error modeling can be achieved with the use of GPS network. For expanding the effective range and decreasing the density of the reference stations, Land Survey Bureau, Ministry of the Interior in Taiwan set up a national GPS network. In order to obtain the high precision positioning and provide the multi-goals services, a GPS network including 66 stations already been constructed in Taiwan. The users can download the corrections from the data center via the wireless internet and obtain the centimeter-level accuracy positioning. The service is very useful for surveyors and the high precision coordinates can be obtained real time.

  • PDF

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.

Application of artificial neural networks to predict total dissolved solids in the river Zayanderud, Iran

  • Gholamreza, Asadollahfardi;Afshin, Meshkat-Dini;Shiva, Homayoun Aria;Nasrin, Roohani
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2016
  • An Artificial Neural Network including a Radial Basis Function (RBF) and a Time Delay Neural Network (TDNN) was used to predict total dissolved solid (TDS) in the river Zayanderud. Water quality parameters in the river for ten years, 2001-2010, were prepared from data monitored by the Isfahan Regional Water Authority. A factor analysis was applied to select the inputs of water quality parameters, which obtained total hardness, bicarbonate, chloride and calcium. Input data to the neural networks were pH, $Na^+$, $Mg^{2+}$, Carbonate ($CO{_3}^{-2}$), $HCO{_3}^{-1}$, $Cl^-$, $Ca^{2+}$ and Total hardness. For learning process 5-fold cross validation were applied. In the best situation, the TDNN contained 2 hidden layers of 15 neurons in each of the layers and the RBF had one hidden layer with 100 neurons. The Mean Squared Error and the Mean Bias Error for the TDNN during the training process were 0.0006 and 0.0603 and for the RBF neural network the mentioned errors were 0.0001 and 0.0006, respectively. In the RBF, the coefficient of determination ($R^2$) and the index of agreement (IA) between the observed data and predicted data were 0.997 and 0.999, respectively. In the TDNN, the $R^2$ and the IA between the actual and predicted data were 0.957 and 0.985, respectively. The results of sensitivity illustrated that $Ca^{2+}$ and $SO{_4}^{2-}$ parameters had the highest effect on the TDS prediction.

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

Tropospheric Data of KASI GNSS Network (2001-2014) Based on the CODE's 2nd Reprocessing Product

  • Roh, Kyoung-Min;Park, Han-Earl;Choi, Byung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2020
  • The trend of water vapor contents in atmosphere is one of key elements for studying climate change. The tropospheric products, i.e., ZTD values achieved through GPS data processing can retrieve the amount of water vapor with higher temporal and spatial resolution than any other instruments. In this study, the tropospheric products of KASINET for a time period from 2001 to 2014 are reprocessed using PPP strategy and the products from the CODE's 2nd reprocessing campaign. For consistency with reprocessing activities of other networks like EPN, the VMF1 mapping function and non-tidal loading effect due to atmospheric pressure are applied in the process. The reprocessing results are investigated through comparing with the CODE's 2nd reprocessing products by including some IGS stations in the process and also calculating weekly coordinate repeatability to see the quality of the processing. After removing outliers based on the variation of averaged formal error, all processed stations have similar variations of formal error about 2 mm which is lower than that of the IGS final product. Comparison results with the CODE's 2nd reprocessing products show that the overall mean difference is found to be -0.28±5.54 mm which is similar level of the previous studies. Finally, the ZTD trends of all KASINET stations are calculated and the averaged trend is achieved as 0.19 mm/yr. However, the trend of each month shows different amounts and directions from -1.26 mm/yr in May to 1.18 mm/yr in August. In conclusion, the reprocessed tropospheric product and applied strategy of this study has enough quality as one of reliable solution for a reference product for Korean Peninsula which is needed to use GPSbased tropospheric product for climate change research.

Performance Analysis of the UHF RFID Reader with the Range Correlation Effects of the Phase Noise (위상 잡음의 거리 상관 효과에 따른 UHF RFID 리더의 성능 분석)

  • Jang, Byung-Jun;Kang, Min-Soo;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.152-160
    • /
    • 2008
  • In this paper, we analyze the performance of a direct-conversion UHF RFID reader with the range correlation effects of the phase noise. Since a UHF RFIB system uses the same oscillator to generate the transmitted carrier and the local oscillation, the periodic interference and phase noise reduction effects occur due to time delay between two signals. Through exact theory and simulation, we verify how to cancel the periodic interference phenomena using I/Q diversity combining technique. And, we analyze phase noise reduction effects due to range correlation as a function of the tag-reader distance and the offset frequency Using these results, we simulate the symbol-error-rate performance with respect to phase noise with and without range correation effects. We show that the phase noise of the local oscillator has little effect on the symbol-error-rate performance because of phase noise reduction by range correlation.

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Performance Analysis of Asynchronous OFDMA Uplink Systems with Timing Misalignments over Frequency-selective Fading Channels (주파수 선택적 페이딩 채널에서 시간오차에 의한 비동기 OFDMA 상향 시스템의 성능 분석)

  • Park, Myong-Hee;Ko, Kyun-Byoung;Park, Byung-Joon;Lee, Young-Il;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.34-42
    • /
    • 2005
  • In orthogonal frequency-division multiple access (OFDMA) uplink environments, asynchronously received signals can cause multiple access interference (MAI). This paper focuses on the performance degradation due to the MAI over frequency-selective fading channels. We first introduce the timing misalignment, which is defined as the relative timing difference between asynchronous timing error of uplink user and reference time of the base station, and analytically derive the MAI using the power delay profile of wide-sense stationary uncorrelated scattering (WSSUS) channel model. Then, the effective signal-to-noise ratio (SNR) and the average symbol error probability (SEP) are derived. The proposed analytical results are verified through simulations with respect to the region of the timing misalignment and the number of asynchronous users.