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1. Introduction

The river Zayanderud is the life of Isfahan province. Therefore, 
protecting the water quality of the river for drinking, agriculture 
and industry is vital. The first step in the proper and sustainable 
management of water resources is to analyze water quality, changes 
in the time and place and to identify the main sources and types 
of water pollutants. The main sources of pollution in river 
Zayanderud are agricultural land uses, domestic and industrial 
wastewater. Agricultural lands provide major cations, anions, nitro-
gen and phosphorus to the River. Domestic sewage and industry 
add pollutants such as phosphorus and heavy metals to the pollu-
tion in the river [1]. 

Salinity in the surface waters is a significant issue of concern 
in various agricultural purposes and domestic consumption. The 
amount of total dissolved solid (TDS) is as an indicator of salinity 
and determining the changes that occurred over time are very 
important to the planning and management of water usage. The 
River's salinity is a problem of great importance and sensitivity 
in all Iranian Rivers and can be caused by several factors, for 

example, minerals in river water and catchment soils that contain 
both suspended and soluble particles [2]. 

Interpretation of water quality is a very important part of water 
quality management. Several methods are available to analyze 
water quality data. Maier and Dandy [3] used the Artificial Neural 
Networks (ANNs) to predict salinity in the Murray River in South 
Australia. Zhang et al. [4] applied the ANN to predict water quality 
in the North Saskatchewan River. Huang and Foo [5] used the 
ANN for assessing variations in salinity in the Apalachicola River 
in Florida. Misaghi and Mohammadi [6] studied the water quality 
of the river Zayanderud, Iran, using an ANN. They employed 
a Generalized Regression Neural Network (GRNN) to predict the 
Biochemical oxygen demand (BOD) and the Dissolved oxygen (DO) 
of the river. Kanani et al. [7] used a Multilayer Perceptron (MLP) 
and an Input Delay Neural Network (IDNN) to predict TDS in 
the Ajichay River. Their results indicated a good performance 
and acceptable accuracy to predict salinity in the river. 
Asadollahfardi et al. [2] applied a MLP and a recurrent neural 
network (RNN) to predict TDS in the Talkheh Rud River, Iran. 
They reported that the results of the RNN had a good agreement 
to the field monitoring. Nemati et al. [8] studied the salinity of 
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the Siminrud River in Iran using an ANN. They concluded that 
magnesium had a high impact in predicting salinity.

The objective of our study was to predict TDS in the river 
Zayanderud, Iran, using a Radial Basis Function (RBF) and a Time 
Delay Neural Network (TDNN). We also applied a sensitivity analy-
sis to find the effect of each parameter in predicting of TDS.

1.1. Study Area

The river Zayanderud basin includes the southwestern region of 
Iran located between 31°30'N and 33°32'N and  49°30'E and 49°52'E. 
The area includes four cities including Shahrekord, Frieden, Lenjan 
and Isfahan and covers part of the Chahar Mahal Bakhtiari province 
(1.7% of the total area). Fig. 1 indicates the study area [1]. Average 
annual rainfall varies from 1,600 mm in the Zard Kuh Mountains 
to less than 40 mm in the eastern regions of Isfahan [9].

Generally, the amount of rainfall in the catchment area of the 
river   Zayanderud decreases from West to East. The mean annual 
air temperature in the northwestern highlands reaches 3.5°C and 
in the eastern parts of the central region temperatures can reach 
21.5°C. The relative humidity in January is at its highest and 
at its lowest in July. From a geological perspective, the studied 
area consists of three main geological zones: Zagros, 
Sanandaj-Sirjan and Central Iran. Virtually each of these zones 
has affected the area according to their specific characteristics. 
Jurassic metamorphic and sedimentary rock and new Quaternary 
alluvium are the most abundant constituents of river rocks in 
the area. Two aspects of fine-grained rock (sedimentary and meta-
morphic) have great importance. First, the geochemistry of the 
rock is partly effective in increasing of natural concentrations 
of minerals in the river Zayanderud, and second erodibility has 

Fig. 1. Location of the Mosian Station study area on the river Zayanderud – Iran.

Table 1. Summary of Statistical Data Used in This Study

Parameters pH
Ca2+

(mg/L)
Na+

(mg/L)
Cl－

(mg/L)
SO4

2− 
(mg/L)

HCO3
－1

(mg/L)
Mg2+

(mg/L)
K+

(mg/L)
TH

(mg/L)
TDS

(mg/L)
Number (mon) 120 120 120 120 120 120 120 120 120 120

Average 7.82 3.40 2.20 1.83 2.14 2.98 1.37 0.04 2.35 432.98

Minimum 6.90 1.70 0.10 0.20 0.10 1.10 0.10 0.00 1.40 232.05
Maximum 8.80 7.80 8.30 9.60 9.51 5.30 5.50 0.50 5.20 1220.70

Standard deviation 0.41 0.96 1.78 1.48 1.53 0.67 0.74 0.08 0.65 187.51

Mode 7.80 2.9 1 0.9 1.4 2.9 1.0 0.01 2.1 320.45
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an important role in increasing fine-grained particles in the river. 
In general, fine-grained particles cause an uptake of potentially 
toxic elements in sediments in the river bed due to a high adsorption 
capacity. The Iranian Central region, including the river 
Zayanderud basin from the western highlands to the eastern regions 
consists of areas with   mild, cool and dry summers, areas with 
cold winters and very hot and dry summers. 

2. Materials and Methods 

We used monthly water quality data from   the river Zayanderud 
from 2001 to 2010, about 120 data for each variable. The data 
were monitored by the Isfahan Regional Water Authority and the 
Department of Environment (Iran). Table 1 presents the summary 
of statistical data in the Mosian monitoring station. 

Selection of suitable input parameters for an artificial neural 
network is a very important step. One of the techniques to identify 
the relationship between water quality parameters is a factor analy-
sis method. 

2.1. Factor Analysis 

A factor analysis is a technique for reducing the input parameters 
to the artificial neural network and finding a more effective method 
to predict TDS parameter. Factor analysis variables (water quality 
parameter) are located in the factors, so that the first factor decreases 
the next variance factor. The variables that are located in the 
first factor are the most effective ones. To perform a factor analysis, 
we applied SPSS version 21 (2014). Before performing a factor 
analysis, we must ensure that we apply appropriate variables of 
the factor analysis. For this purpose, we used a Kaiser-Meyer-Olkin 
(KMO) index, Eq. (1) [10].

 ΣΣ
 ΣΣ



ΣΣ


(1)

Where rij is the correlation coefficient of indicator   and in-

dicator of  is the offset correlation coefficient of index   

and indicator .  values of close    to one indicate that the 

correlation between pairs of variables can be explained by other 
variables. Therefore, justifying the application of variable factor 
analysis is provable. The following steps should be carried out 
for factor analysis.

1 - Creating a matrix of correlations between the water quality 
parameters which is a square matrix of correlation 
coefficients.

2 - Determining  to demonstrate the suitability of factor 
analysis.

3 - Factors should be partially rotated around the origin, to 
obtain a new position. 

4 - Finally, the number of factors   equal of the correlation matrix 
that is considered to be greater than one [11-15].

2.2. ANN Modeling

An ANN is a computing technique to help the learning process 

and tries to map the input space (input layer) and a favorable 
environment (output layer) by using processors called neurons 
by identifying inherent relationships between data [16]. A hidden 
layer receives data from the input layer, processes it and sends 
it to the output layer. Each network receives training through 
examples. Network learning is carried out when the connection 
weight between the layers change in a way that the difference 
between the predicted and the measured values   are within accept-
able limits. Achievement to this condition fulfills the learning 
process. This expresses the weight of memory and network 
knowledge. Trained neural networks can be used to predict outputs 
corresponding to actual new data [17]. Due to the structure of 
ANNs, features such as high-speed processing, template learning 
ability by a template pattern method, generalization of ability after 
learning, flexibility against unexpected failures and lack of sig-
nificant disruption on the part of the connection are due to network 
weight distribution [18]. 

2.3. Architecture of the Network

We used two hidden layers of TDNNs with a sigmoid tangent 
transfer function and linear output. The number of neural in 
the hidden layer can be determined by the output component. 
The only lasting selection in network architecture would be the 
number of hidden layers which we selected according to a mini-
mum error between one, two and three hidden layer neural 
network. To determine the number of neural in the hidden layer, 
the method of trial and error was applied to arrive at best network. 
Another point is the simplicity of the network. Between two alter-
natives, the one which has less neurons in the hidden layers 
was selected for TDNNs to avoid network complication. For ad-
equacy of model during training, Mean Bias Error (MBE) and 
Mean Squared Error (MSE) were used. The MBE indicates the 
adequacy of the model. If MBE equal to zero; our model is adequate 
and if MBE less than zero, the model is underestimated. The 
MBE greater than zero shows overestimating of the network. MBE 
is a tool to prevent overestimating of neural network. In the training 
process, the weights and biases were adjusted using momentum 
methods to minimize the network performance, and the perform-
ance was evaluated with MSE between the network outputs and 
the target outputs. If the calculated MSE found small enough 
and stable at the end of each learning epoch, by adjusting the 
learning rate, epochs, number of hidden layers and neurons, the 
parameter set is determined and a post-process is carried out.

In learning parameters of a prediction function and testing, 
a model would just repeat the labels of the samples that it has 
just seen would have a perfect score but would fail to predict 
anything useful on yet-unseen data. This situation is called 
overfitting. To avoid it, k-fold cross validation is common practice. 
In this method, the original sample is randomly split into k almost 
equal sized subsamples. A model is trained using k-1 of the folds 
as training data; the resulting model is validated on the remaining 
part of the data as testing data for calculating the accuracy of 
the model. The cross-validation process is then repeated k times, 
with each of the k subsamples used exactly once as the validation 
data. The k results from the folds can then be averaged (or otherwise 
combined) to produce a single estimation. This approach can be 
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computationally expensive, but does not waste too much data, 
which is a major advantage in problem such as inverse inference 
where the number of samples is small.

As usual, the true error is estimated as the average error rate 
on test examples, Eq. (2).

  


  



 (2)

Where N is the number of subsamples. 

2.4. The TDNN Network

A time delay neural network is a multilayer neural network that 
is able to deal with the dynamic nature of sample data and to 
hold input signals. A TDNN consists of three layers whose weights 
are coupled with time delay cells. Each cell’s transfer function 
has a TDNN Sigmoid tangent function and a D (N + 1) weighted 
input. A TDNN is a dynamic network output, which depends 
on the network’s previous inputs and outputs in addition to its 
current inputs. Since networks have dynamic memories, they can 
be used for learning time-varying, sequential patterns. A TDNN 
operator receives an input signal and keeps it for a time step 
and in the next time step, the input signal emerges as an output 
result. By connecting an N series to a TDNN operation, a Tapped 
Delay Line (TDL) will be obtained. The output is a vector with 
N + 1 component. The N + 1 components include the inputs 
in the current time step and the previous N time steps [19]. The 
present study evaluated the modeling of a new TDNN network 
with a training function trainlm to predict TDS variation trends. 
We applied a new TDNN function network, a sigmoid tangent 
transfer function, a training trainlm function and two hidden layers 
to predict TDS using 10 years of data.

2.5. RBF Neural Network
The Gaussian RBF neural network is a non-normalized form of 
a Gaussian distribution nonlinear function and has good features 
for enhanced learning. Gaussian neural networks that used for 
complex mapping can also learn, identify, synchronize and to 
control, nonlinear dynamic systems [16].

An RBF network is naturally derived from an interpolation 
problem. The RBF has a non-linear input layer and a Gaussian 
hidden layer. Fig. 2 depicts a view of an RBF neural network.

According to Fig. 2, an RBF neural network input layer is directly 
connected to the hidden layer. The output of the j-th hidden layer 
is obtained from Eq. (3) [20]. 

 

∅
(3)

Where hj is the output of the j-th neuron; φ is a nonlinear 
function of RBF; X is an input vector;  is a neuron center and 

 is the neuron's central span. Nonlinear function is due to Φ 

functions. Neurons have a linear function in the output layer and 
the output of  in neuron  in the output layer is obtained from 

Eq. (4) [20]:

Fig. 2. Schematic view of the RBF network.

  Σ ･ (4)

Where  is a synaptic weight connecting of j-th of hidden 

layer and neuron  of output layer and m is the number of hidden 
layer neurons.

We used a newrb function network and a radbas transfer 
function. The number of neurons in the network can be added 
sequentially and continue until MSE approaches the set target.

2.6. Model Efficiency 

To compare different prediction results, forecast errors of different 
periods need to be considered to be regarded as benchmark 
comparisons. Among these criteria,we used the root mean squared 
error(RMSE)(Eq. (5)). An MBE is used to calculate the adequacy 
of the model. (Eq. (5)) [21].

  



  

  
 (5)

  

  

 

   (6)

Where  is the number of data;  is the actual data and 

 is the predicted data.

Also the coefficient of determination (R2) and the Index of 
Agreement (IA) indicate the reliability of the model [22]. R2 and 
IA can be illustrated as follows:
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Where   and   are  the means of the actual data and the 
predicted data, respectively. 
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3. Results and Discussion

The first step is to identify the parameters which contribute to 
the prediction of TDS. We used factor analysis to reach this 
objective. The first stage in factor analysis is to construct the 
correlation parameter matrix. If the correlation coefficients are 
less than 0.3, using factor analysis is questionable [13, 23]. 
However, according to Table 2, many of the correlation coefficient 
between the water quality parameters in the Mosian Station are 
larger than 0.3. 

According to Table 3, the data are suitable for factor analysis 
because the KMO index of all stations is greater than 0.5 [11]. 
Bartlett's test results indicate that when the p value less than 
0.05, a null hypothesis is confirmed, and a significant correlation 
exists between the variables.

Table 4 describes the eigenvalues   for the factor analysis of hydro 
chemical data for the Mosian Station. To determine the number of 
factors, we selected the eigenvalues which were bigger than 1 [10]. 

Fig. 3 indicates the screen plot, in which the horizontal axis 
determines the factor number and the vertical axis presents the 
eigenvalues. As presented in Fig. 3,   the eigenvalues are   in descend-
ing tradition and a sudden drop between eigenvalue 1 and ei-
genvalue 2 confirms the existence of at least two of the main 
factors. In general, factors with a steep slope are most helpful 
in analysis and factors with a low slope have less impact on the 
analysis.

The first three factors include 80.63% of the total variance (Table 
4). Table 5 illustrates the results of rotated factor loading using 
a Varimax method. We used the result of factor analysis to select 
the proper input to the ANN. As indicated in Table 5, the first 
factor is total hardness (TH), bicarbonate (HCO3

-1), chloride (Cl－) 
and calcium (Ca2+), which are the most important parameters 
in water quality of the river Zayanderud. We selected the mentioned 
parameters as input parameters to the ANN.

Table 3. Coefficient of the KMO and Bartlett Test Results
Test  statistic The Mosian Station

KMO 0.817

Significance 0.00

Table 4. Individual Eigenvalues and the Cumulative Variance of Water 
Quality Observations in the Mosian Station

Factors Eigenvalue Variance %
Cumulative  
variance %

1 6.871 57.255 57.255

2 1.732 14.437 71.692

3 1.073 8.945 80.637

4 .783 6.523 87.161

5 .721 6.006 93.167

6 .377 3.142 96.309

7 .244 2.034 98.343

8 .168 1.402 99.745

9 .021 .175 99.920

10 .008 .066 99.987

11 .002 .013 100.000

12 -1.004E-013 -1.033E-013 100.000

Fig. 3. Screen plot of eigenvalues of the Mosian Station.

3.1. The ANN Results 

Input data for training the ANN are based on the results of factor 
analysis. We selected pH, Na+, Mg2+, carbonate parameters and 

Table 2. The Correlation Coefficient Matrix between the Water Quality Parameters in the Mosian Station

EC pH CO3
-2 HCO3

-1 Cl－ SO4
2− Ca2+ Mg2+ Na+ K+ TH

Correlation

EC 1.000 - .190 - .008 .469 .932 .867 .817 .616 .960 .176 .950

pH -.190 1.000 .548 - .282 - .100 - .201 - .284 - .019 - .190 .048 - .234

CO3 -.008 .548 1.000 - .333 .018 .036 - .059 .082 - .021 - .117 .001

HCO3 .469 - .282 - .333 1.000 .384 .180 .521 .218 .421 - .001 .511

Cl .932 - .100 .018 .384 1.000 .703 .735 .571 .906 .184 .866

SO4 .867 - .201 .036 .180 .703 1.000 .674 .603 .867 .168 .836

Ca .817 - .284 - .059 .521 .735 .674 1.000 .164 .760 .036 .842

Mg .616 - .019 .082 .218 .571 .603 .164 1.000 .532 .160 .667

Na .960 - .190 - .021 .421 .906 .867 .760 .532 1.000 .182 .866

K .176 .048 - .117 - .001 .184 .168 .036 .160 .182 1.000 .109

TH .950 - .234 .001 .511 .866 .836 .842 .667 .866 .109 1.000
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the results of factor analysis, which were HCO3
-1, Cl－, Ca2+ and 

TH as input data to the ANN. In the sensitivity analysis the accuracy 
of the factor analysis will be examined. To avoid overfitting, in 
this study, we used 6-fold cross validation to compute the true 
error estimation. We applied six sets of data, in which the testing 
data were changed. The results of each five subsamples validating 
for both TDNN and RBF networks are listed in the Table 6.

Fig. 4. The performance of the TDNN for training, validation and testing. 

As indicated in table 6, the second set had the best performance. 
The true RMSE acquires from the average of the each subsamples 
error. The true RMSE were 0.843 and 0.516 for TDNN and RBF 
network, respectively, which proves the accuracy of the RBF is 
better than TDNN model. The results of the two RBF and TDNN 
models are as follows:

3.2. The Time Delay Neural Network (TDNN) Results 

Fig. 4 presents the MSE between the actual and the simulated 
data during the modeling process in the TDNN method for 
training, validation and testing. Changing the rate of the error 
after epoch 6 is negligible. Therefore, we stopped the training 
process at epoch 11. The TDNN contains 2 hidden layers and 
15 neurons in each layer. For TDNNs, we reached a minimum 
error when 2 hidden layers and 15 neurons in each layer 
were applied. 

As indicated in Fig. 5, the coefficient of determination (R2) 
and the IA between the predicted TDS and the observed data 
were 0.957 and 0.986 which means the accuracy of the model 
in predicting TDS parameters was acceptable. 

Table 5. Rotated Factors Loading for Water Quality Observations in the Mosian Station Using a Vartimax Method 
TH K+ Na+ Mg2+ Ca2+ SO4

2− Cl－ HCO3
-1 CO3

-2 pH TDS Factors Station
0.82 - - - 0.83 - 0.68 0.65 - - 0.78 1

Mosian- 0.63 0.75 - - 0.85 - - - - - 2
- - - 0.96 - - - - 0.84 0.78 - 3

Table 6. The Result of 5-fold Cross Validation for TDNN and RBF Networks

Subsamples
TDNN RBF

R2 RMSE R2 RMSE
NO.1 0.932 0.801 0.985 0.612

NO.2 0.957 0.823 0.997 0.431
NO.3 0.928 0.854 0.981 0.689

NO.4 0.952 0.917 0.976 0.456

NO.5 0.942 0.836 0.989 0.458
NO.6 0.944 0.829 0.987 0.451

True RMSE 0.843 0.516

Fig. 5. Comparisons of the observed and the predicted results using the TDNN neural network.
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3.3. The RBF Neural Network Results

As illustrated in Fig. 6, the amount of errors decreased sharply 
at first and then gradually declined until the amount of error 
approach zero during the training process of the network. The 
amount of errors after Epoch 90 was approximately the same for, 
validation and testing. As indicated in Fig. 6, using one hidden 
layer with 100 neurons, we reached an MSE equal to 0.0001, 
after which training was stopped.

Fig. 7. presents the actual and the predicted data of the TDS. 
As illustrated in Fig. 7, the R2 between the predicted data and 
the observed data for TDS in the Mosian station was 0.997 and 
the IA was 0.999. 

Table 7 indicates the MSE, the MBE and the RMSE for the 
TDNN and RBF. As described in the Table 7, the amount of errors 
in the RBF is lower than in the TDNN. Using the RBF neural 
network is more acceptable than using a TDNN to predict the 
TDS of the river. If we compared the R2 of TDNNs with RBF 

Fig. 6. The performance of training, validation and testing for the RBF 
neural network.

Table 7. The Amounts of Different Errors in the TDNN and the RBF
RMSE MBE MSE Type of network
0.843 0.0603 0.0006 TDNN

0.516 0.0006 0.0001 RBF

neural network, RBF predicting of TDS indicates more accurate  
than TDNNs (Fig. 5, Fig. 7).

The prediction of TDS concentrations in the river may be benefi-
cial for water quality management to make proper decisions in 
using river water for irrigation. 

A similar research for predicting of TDS in the Ajichay River, 
Iran, was carried out by Kanani et al. (2008) using MLP and TDNN 
methods in one station. The R2 between the observed and the 
predicted TDS concentrations was 0.859 and 0.949, respectively. 
Their input data to the model was only the amount of flow. However, 
in our study, eight  parameters including pH, Na+, Mg2+, 
Carbonat(CO3

-2), HCO3
-1, Cl－, Ca2+ and TH were used as input 

parameters to the ANN. We also carried out a sensitivity analysis 
to determine the roles of each input parameter in predicting of 
TDS in the river. Asadollahfardi et al. [2] predicted the TDS of 
the Talkherud River, Iran, using an MLP and ELMAN methods. 
They studied two stations and the R2 between the observed and 
the predicted TDS concentrations was 0.964 and 0.96, respectively. 
Their input data was rate of flow. The R2 in our study is larger 
than their study and the input parameter for their work was only 
the amount of flow in the river. Nemati et al. [8] applied an ANN 
to predict TDS of the Siminehrud River, Iran. Its R2 was 0.841. 
The R2 of our study was 0.999 and for selecting of suitable input 
parameters, we applied factor analysis. 

3.4. Sensitivity Analysis

Sensitivity analysis is a method to assess the importance of each 
input parameter on the concentration of the output parameter. 
We declined and increased each of the input parameters 20%, 
while the other input parameter data were kept unchanged. After 
that, the impact of each parameter in prediction of the TDS concen-
trations was identified.

Fig. 8 presents the results of sensitivity analysis, using TDNN 
network. As indicated in Fig. 8, Ca2+ and SO4

2− had the greatest 
impact on the TDS prediction. After that, Cl－, HCO3

-1 and TH 
were effective, respectively. Except the SO4

2−, the results are the 
same as factor analysis results for selection of input parameters.

Fig. 7. Comparisons of actual and simulated data using the RBF neural network.
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Fig. 8. Sensitivity analysis using TDNN network.

4. Conclusions

We summarized the results and discussions of using the RBF 
and the TDNN to predict TDS of the river Zayandehrud in the 
Mosian monitoring station as follows: 

• For TDS prediction in TDNN, R2 and IA between the predicted 
data and the observed data were 0.957 and 0.986, respectively, 
which mean that our two neural network results are acceptable.

• The R2 and the IA between the predicted and the observed 
data for predicting TDS in the RBF was 0.997 and 0.999. The 
TDNN contained 2 hidden layers with 15 neurons in each layer 
and the RBF with one hidden layer containing 100 neurons.

• The MSE, RMSE and MBE for the TDNN were 0.0006, 0.0603 
and 0.843, respectively. For the RBF neural network the mentioned 
errors were 0.0001, 0.43 and 0.516, respectively.

• The result of the RBF is more accurate than the TDNN in 
the prediction of TDS in Zayanderud River.

• The results of sensitivity analysis indicated that Ca2+ and 
SO4

2− had the highest effect on the TDS prediction. According 
to its results, all the parameters from factor analysis had an im-
portant role in changes of TDS. The SO4

2− was not mentioned 
in the results of factor analysis.

Acknowledgements

I wish to acknowledge Mr. Ernest Rammel’s assistance in editing 
our manuscript.

References

1. Hossaini Abari H. Zayandehrood from source to swamp. 2nd 
ed. Esfahan: Golha press; 2000.

2. Asadollahfardi G, Taklify A, Ghanbari A. Application of artifi-
cial neural network to predict TDS in Talkheh Rud River. 
J. Irrig. Drain. Eng. 2012;138:363-370. 

3. Maier HR, Dandy GC. The use of artificial neural networks 
for the prediction of water quality parameters. J. Water Resour. 
Res. 1996;32:1013-1022. 

4. Zhang Q, Stanley SJ. Forecasting raw-water quality parameters 
in the North Saskatchewan River by neural network modeling. 
Water Res.1997;1354:72-79. 

5. Huang W, Foo S. Neural network modeling of salinity variation 
in the Apalachicola River. Water Res. 2000;36:356-362.

6. Misaghi F, Mohammadi K. Estimating water quality changes 
in the Zayandeh Rud River using artificial neural network 
model. 2000; written for presentation at CSAE/SCGR.

7. Kanani SH, Asadollahfardi G, Ghanbari A.  Application of 
artificial neural network to predict total dissolved solid in 
Achechay River basin.  J. World Appl. Sci. 2008;4:646-654.

8. Nemati S, Naghipour L, Fazeli Fard MH. Artificial neural net-
work modeling of total dissolved solid in the Simineh River, 
Iran. J. Civil Eng. Urban. 2014;4:8-14.

9. Moienian M. The natural landscape of the Zayandehrood River. 
Esfahan: Jahad Daneshgahi; 1999.

10. Kaiser HF. The application of electronic computers to factor 
analysis. Educ. Psychol. Meas. 1960;20:141-151.

11. Sarmad Z, Bazargan A, Hejazi A. Research methods in the 
behavioral sciences. 2nd ed. Tehran: Nshragah Institute; 1997.

12. Lapin L. Probability and statistics for modern engineering, 
translation: Tamuri M, Rezaeian M. 1st ed. Tehran: Univ. of 
Technology; 2007.

13. Johnson RA, Wichem DW. Applied multivariate statistical anal-
ysis, translation: Nirumand H. Mashhad: Ferdowsi Univ.; 2007.

14. Meshkani M. Time series analysis, forecasting and control. 
Tehran: Univ. of Shahid Beheshti; 1992.

15. Sobhanifar Y, Kharazian M. Factor analysis, structural equation 
modeling and multilevel. 1st ed. Tehran: Univ. of Emam Sadegh; 
2012.

16. Kia M. Neural network in MATLAB. 2nd ed. Tehran: Kian 
Univ. Press; 2012.

17. Mahdinejad M. The prediction of air pollution of Tehran based 
on artificial neural network. Master Thesis. Tehran: Univ. of 
Kharazmi; 2013.

18. Taherion M. Artificial neural network and its application in 
environmental engineering. First conference on environmental 
engineering. Tehran: Tehran Univ.; 2006.

19. Hornik KM, Stinchocombe M, White H. Multilayer feed forward 
networks are universal approximator. Neural Networks 1989;2: 
359-366.

20. Menhaj M. Computational intelligence, fundamentals of artifi-
cial neural networks. Vol. 1. Farsi: Amirkabir Univ. Publisher; 
1998.

21. Kennedy JB, Neville AD. Basic statistical methods for engineers 
and scientists. 2nd ed. New York: Harper and Ro.; 1964.

22. Krause P, Boyle DP, Base F. Comparison of different efficiency 
criteria for hydrological model assessment. Adv. Geosci. 
2005;5:89-97.

23. Tabachnick BG, Fidell LS. Using multivariate statistic. 6th 
ed. Boston: Pearson/Allyn and Bacon; 2012.


