• Title/Summary/Keyword: Time Constraints

Search Result 1,968, Processing Time 0.025 seconds

Task Assignment Strategies for a Complex Real-time Network System

  • Kim Hong-Ryeol;Oh Jae-Joon;Kim Dae-Won
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.601-614
    • /
    • 2006
  • In this paper, a study on task assignment strategies for a complex real-time network system is presented. Firstly, two task assignment strategies are proposed to improve previous strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, and also with optimizing system utilization through period modulation of the tasks. Consequently, the strategies aim at the optimizationto optimize of system performance with while still meeting real-time constraints. The proposed task assignment strategies are devised using the genetic algorithmswith heuristic real-time constraints in the generation of new populations. The strategies are differentiated by the optimization method of the two objectives-meeting end-to-end real-time constraints and optimizing system utilization: the first one has sequential genetic algorithm routines for the objectives, and the second one has one multiple objective genetic algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies and a well-known existing task assignment strategy using the BnB(Branch and Bound) optimization are compared with one other through some simulation tests. Through the comparison of the simulation results, the most adequate task assignment strategies are proposed for some as system requirements-: the optimization of system utilization, the maximization of running tasktasks, and the minimization of the number of network node nodesnumber for a network system.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

Identification of target subjects and their constraints for automated MEP routing in an AEC project

  • Park, SeongHun;Shin, MinSo;Kim, Tae wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.776-783
    • /
    • 2022
  • Since Mechanical, Electrical, and Plumbing(MEP) routing is a repetitive and experience-centered process that requires considerable time and human resources, if automated, design errors can be prevented and the previously required time and human resources can be reduced. Although research on automatic routing has been conducted in many industries, the MEP routing in AEC projects has yet to be identified due to the complexity of system configuration, distributed expertise, and various constraints. Therefore, the purpose of this study is to identify the target subjects for MEP routing automation and the constraints of each subject. The MEP design checklist provided by a CM company and existing literature review were conducted, and target subjects and constraints were identified through process observation and in-depth expert interviews for five days by visiting a MEP design company. The target subjects were largely divided into six categories: air conditioning plumbing, air conditioning duct, restroom sanitary plumbing, heating plumbing, and diagram. The findings from interviews show that work reduction and error reduction has the greatest effect on air conditioning plumbing while the level of difficulty is the highest in air conditioning duct and restroom sanitary plumbing. Major constraints for each subject include preventing cold drafts on air conditioning pipes, deviation in ventilation volume in air conditioning ducts, routing order on restroom sanitary plumbing, and separation distance from the wall on heating plumbing. In this way, subjects and constraints identified in this study can be used for MEP automatic routing.

  • PDF

Optimal Period and Priority Assignment Using Task & Message-Based Scheduling in Distributed Control Systems (분산 제어 시스템에서의 태스크와 메시지 기반 스케줄링을 이용한 최적 주기와 우선순위 할당)

  • 김형육;이철민;박홍성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.506-513
    • /
    • 2002
  • Distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks. An assignment method of the optimal period of each loop and a heuristic assignment rule of each message's priority are proposed and the integrated scheduling method is developed based on them.

An optimal and genetic route search algorithm for intelligent route guidance system (지능형 주행 안내 시스템을 위한 유전 알고리즘에 근거한 최적 경로 탐색 알고리즘)

  • Choe, Gyoo-Seok;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • In this thesis, based on Genetic Algorithm, a new route search algorithm is presented to search an optimal route between the origin and the destination in intelligent route guidance systems in order to minimize the route traveling time. The proposed algorithm is effectively employed to complex road networks which have diverse turn constrains, time-delay constraints due to cross signals, and stochastic traffic volume. The algorithm is also shown to significantly promote search efficiency by changing the population size of path individuals that exist in each generation through the concept of age and lifetime to each path individual. A virtual road-traffic network with various turn constraints and traffic volume is simulated, where the suggested algorithm promptly produces not only an optimal route to minimize the route cost but also the estimated travel time for any pair of the origin and the destination, while effectively avoiding turn constraints and traffic jam.

  • PDF

A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique (다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획)

  • 이지홍;오영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF

University Students' Propensity toward Smartphone Addiction Affects Their Leisure Satisfaction (대학생의 스마트폰 중독성향이 여가만족도에 미치는 영향)

  • Ryu, Mihyun;Cho, Hyangsook
    • Journal of Family Resource Management and Policy Review
    • /
    • v.18 no.1
    • /
    • pp.47-68
    • /
    • 2014
  • This study investigated the relationship between smartphone addiction propensities and leisure satisfaction according to leisure time constraints among university students and attempted to promote an effective and desirable leisure culture. The main findings were as follows: First, leisure time constraints showed differences in terms of the withdrawal factors, overall smartphone addiction propensities, and leisure satisfaction; self-efficacy showed significant differences in terms of withdrawal and overall smartphone addiction propensities; and control showed a significant difference in leisure satisfaction. Second, in the case of university students, it was revealed that regardless of leisure constraints, as disturbance of daily living and tolerance are higher, leisure satisfaction is lower in those with smartphone addiction propensities.

A study on the variable structure control method including robot operational condition (로보트 운용조건을 포함한 가변구조 제어방식에 관한 연구)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.72-75
    • /
    • 1988
  • Due to the fact that the set point regulation scheme by the variable structure control method concerns only the initial and final locations of a manipulator, many constraints may exist in the application of path tracking with obstracle avoidance. The variable structure parameter should be selected in the trajectory planning step by satisfying the constraints of the travel time and the path deviations This paper presents the selection algorithm of the variable structure parameters with the constraints of the system dynamics and the travel time and the path deviation. This study makes unify the trajectory planning and tracking control using the variable structure control method.

  • PDF

A Study on the Optimization of Drilling Operations(1): Optimization of Machining Variables for Drilling Operations (드릴가공 최적화에 대한 연구(1): 드릴가공시 가공변수의 최적화)

  • Rou, Hoi-Jin
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.337-345
    • /
    • 1999
  • This paper presents the optimization of a drilling operation subject to machining constraints such as power, torque, thrust, speed and feed rate. The optimization is meant to minimize the machining time required to produce a hole. For the first time, the effects of a pilot hole are included in the formulation of the machining constraints. The optimization problem is solved by using the geometric programming technique. The dual problem is simplified based on the characteristics of the problem, and the effects of machining constraints on the machining variables are identified.

  • PDF