• Title/Summary/Keyword: TiN interlayer

Search Result 53, Processing Time 0.025 seconds

Corrosion Behavior of TiN Ion Plated Steel Plate(I)-Effects of Ti interlayer and TiN coating thickness (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I)-Ti 하지 코팅 및 TiN 코팅 두께의 영향)

  • Yeon, Yun Mo;Han, Jeon Geon;Kim, Dae Jin;Bae, Eun Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.34-34
    • /
    • 1991
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating TiN was are ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$ prior to 2$\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

Corrosion Behavior of TiN Ion Plated Steel Plate(I) -Effects of Ti interlayer and TiN coating thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I) - Ti 하지 코팅 및 TiN 코팅 두께의 영향 -)

  • 연윤모;한전건;김대진;배은현
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating. TiN was arc ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, $2\mu\textrm{m}$ and $3\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N $H_2$SO$_4$ as well as salt spray test. Porosity of each coating was also tested by using $SO_2$ test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of $2\mu\textrm{m}$ and $3\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

The Effect of Titanium Interlayer on the Adhesion Properties of TiN Coating (Titanium Interlayer가 TiN 박막의 밀착특성에 미치는 영향)

  • Kong, S.H.;Kim, H.W.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1992
  • In order to improve adhesive force of TiN film, we sputtered titanium as interlayer before TiN deposition by Plasma Enhanced Chemical Vapour Deposition. We observed changes of hardness and adhesion at a various thickness of titanium interlayer and also examined analysis. At the critical thickness of the titanium interlayer(about $0.2{\mu}$), adhesive force of TiN films were promoted mostly. But over the critical thickness, a marked reduction of adhesive force was showed, because of the internal stress of titanium interlayer. From AES analysis, the adhesion improvement of TiN films was mainly caused by nitrogen diffusion into titanium interlayer during TiN deposition process which relieved stress concentration at TiN coating-substrate interface.

  • PDF

Corrosion Behavior of TiN Ion Plated Steel Plate(III)-Effects of Ni and Ti interlayer thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(III)-Ni 및 Ti 하지코팅두께의 영향-)

  • 한전건;연윤모
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.55-62
    • /
    • 1993
  • The effect of interlayer coating thickness of Ni and Ti on corrosion behavior was studied for TiN ion plat-ed steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Ni interlayer coating was effectived in reducing corrosion current density of active region and Ti interlayer coating over Ni coating reduced the anodic corrosion current density by an order of 4 with increasing the thickness of Ti up to$ 3\mu\textrm{m}$. The improvement of corrosion resistance by Ni/Ti interlayer coating was attributed to the effective prevention of penetration of active corrosion agent resulting from the inherent corrosion resistance of Ni and Ti. Putting corrosion behavior was observed from salt spray test result for all specimens and corrosion resistance at salt atmosphere was enhanced with increasing Ni and Ti thickness, Cor-lay TiN coating was spalled out by the generation of corrosion products.

  • PDF

Corrosion Behavior of TiN Ion Plated Steel Plate(II)-Effects of Ni and Ni/Ti interlayers- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구 (II)-Ni 및 Ni-Ti 하지코팅의 영향-)

  • 한전건;연윤모;홍준희
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.82-89
    • /
    • 1992
  • The effect of interlayer coating of Ni and Ti on corrosion behavior was studied in TiN ion plated steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating of $2\mu\textrm{m}$. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test. Corrosion resistance was improved with increasing the thickness of Ni interlayer coating and Ni-Ti interlayer coating markedly enhanced the corrosion resistance. Ni/Ti interlayer coating of $2\mu\textrm{m}$/2$\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 1. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ni and Ti interlayers, Ni/Ti interlayers coating were also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

Novel Ni-Silicide Structure Utilizing Cobalt Interlayer and TiN Capping Layer and its Application to Nano-CMOS (Cobalt Interlayer 와 TiN capping를 갖는 새로운 구조의 Ni-Silicide 및 Nano CMOS에의 응용)

  • 오순영;윤장근;박영호;황빈봉;지희환;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, a novel Ni silicide technology with Cobalt interlayer and Titanium Nitride(TiN) capping layer for sub 100 nm CMOS technologies is presented, and the device parameters are characterized. The thermal stability of hi silicide is improved a lot by applying co-interlayer at Ni/Si interface. TiN capping layer is also applied to prevent the abnormal oxidation of NiSi and to provide a smooth silicidc interface. The proposed NiSi structure showed almost same electrical properties such as little variation of sheet resistance, leakage current and drive current even after the post silicidation furnace annealing at $700^{\circ}C$ for 30 min. Therefore, it is confirmed that high thermal robust Ni silicide for the nano CMOS device is achieved by newly proposed Co/Ni/TiN structure.

Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes (코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

A study on the effect of process parameters on the corrosion resistance of ion plated Tin films with Ti and Ni interlayers. (이온플레팅시 공정조건이 Ti 및 Ni 중간층을 갖는층을 갖는 TiN 박막의 내식성에 미치는 영향에 관한 연구)

  • 하희성;이종민;이인행;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 1997
  • The effects of process parameters substrate such as substrate current and substrate temperature on the corrosion resistance of ion plated TiN film were investigated. TiN fims were deposited on speed steel on which Ti or Ni hed been previously evaporated. Dense TiN films could be obtained under higher substrate current(1A) and substrate temperature($500^{\circ}C$), whereas TiN films deposited with lower substances current(0.5A) and substrate temperature($300^{\circ}C$) showed porous structure. The corrosion resistances of high speed steel was considerably increased when dense TiN films had been formed on it. The effect of Ti and Ni interlayer on the increase of the corrosion resistance was also significant with dense TiN films, while there was little effect of interlayer on the corrosion resistance when TiN films were porous. the effect of interlayer on the corrosion resistance was more outstanding with Ti then with Ni, because Ti reacts more easily with oxygen to form an oxide layer, and it also shows higher resistance against chlorine containing corrosion media.

  • PDF