• Title/Summary/Keyword: TiC powder

Search Result 674, Processing Time 0.035 seconds

Synthesis of TiC-Ni Based Cermet Powders and Microstructures of Sintered Compacts Prepared by Reaction Milling (반응밀링법으로 제조한 TiC-NirP 서멧분말제조 및 소결성형체의 미세조직)

  • 최철진
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • The pure Ti, Ni and carbon powders were reaction milled to synthesize the TiC-Ni based cermet powders with ultrafine microstructures. After milling, the ultrafine TiC or amorphous Ti-Ni phase was obtained, respectively, according to the milling condition. The effects of milling variables on the synthesizing behavior of the powders were investigated in detail. The sintered TiC-Ni based cermet of the reaction milled powders consisted of very fine TiC of 0.2~1.5$\mu$m, as compared with that of a commercial cermet of 3~5$\mu$m. This demonstrates the potenial of reaction milling as an effective processing route for the preparation of cermet materials.

  • PDF

Fabrication of Porous W-Ti by Freeze-Drying and Hydrogen Reduction of WO3-TiH2 Powder Mixtures (WO3-TiH2 혼합분말의 동결건조 및 수소환원에 의한 W-Ti 다공체 제조)

  • Kang, Hyunji;Park, Sung Hyun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.472-476
    • /
    • 2017
  • Porous W-10 wt% Ti alloys are prepared by freeze-drying a $WO_3-TiH_2$/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the $WO_3$ peak of the starting powder and reaction-phase peaks such as $WO_{2.9}$, $WO_2$, and $TiO_2$ peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of $WO_3$ and the dehydrogenation reaction of $TiH_2$. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at $1000^{\circ}C$ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.

Effect of Addition of Other Componene (B4C, Mn, TiB2, B) on TiC-Ni3Al Cermet (TiC-Ni3Al Cermet에 타성분(B4C, Mn, TiB2, B) 첨가의 영향)

  • 김지헌;이완재
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.352-358
    • /
    • 2002
  • The effects of boron or manganese added as $B_4C$, Mn, $TiB_2$, B on TiC-30vo1.%$Ni_3Al$ cermet sintered at 1380 and $1400^{\circ}C$ for 1 hour, were examined in relation with shrinkage, relative density, microstructure, lattice parameter, hardness and fracture toughness ($K_{IC}$). The results are summarized as follows: 1) The highest shrink-age showed about 30.5% in the specimen added B$_4$C and the maximum relative density was about 99% in the specimen added $TiB_2$; 2) The grains of TiC were grown during sintering and made the surrounding structure by adding boron and manganese. The largest grain size showed about $2.8\mutextrm{m}$ in the specimen with boron sintered at $1400^{\circ}C$;3) The lattice parameter of TiC was about $4.325\AA$ and $Ni_3Al$ about $3.592\AA$ by adding other elements; 4) The highest hardness was about $1100kgf/\textrm{mm}^2$ in the specimen with B4C; 5) The fracture toughness ($K_{IC}$) showed about $15MNm^{-3/2}$ in the specimen added $TiB_2$.

Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials (하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구)

  • Jeong, Guk-Hyun;Kim, Kwang-Ho;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

Effect of Secondary Carbide Addition on Properties of $Ti(C_{0.7}N_{0.3})-Ni$ Cermets

  • Ahn, S.;Kim, H.;Kang, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.107-108
    • /
    • 2006
  • The effect of WC or NbC addition on various properties of Ti(C0.7N0.3)-Ni cermets was investigated. The microstructure oj Ti(C0.7N0.3)-xWC-20Ni showed a typical core/rim structure, irrespective of the WC content, whereas the structure oj Ti(C0.7N0.3)-xNbC-20Ni was different and was dependent on the NbC content. The hardness (HV) and the fracture toughness (KIC) had a tendency to increase marginally, while the coercive force (HC) and the magnetic saturation $(4{\pi}{\sigma})$ decreased gradually with an increase in WC or NbC content in the systems studied. In addition, increasing WC content in Ti(C0.7N0.3)-xWC-20Ni system, decarburization was retarded, while denitrification was accelerated

  • PDF

Pore Structure and Mechanic:11 Property of Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis (고온자전합성법으로 제조된 다공성 TiNi 생체재료의 기공구조 및 기계적 특성)

  • 김지순;강지훈;양석균;정순호;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • Porous TiNi bodies were produced by Self-propagating High-temperature Synthesis (SHS) method from a powder mixture of Ti and Ni. Porosity, pore size and structure, mechanical property, and transformation temperature of TiNi product were investigated. The average porosity and pore size of produced porous TiNi body are 63% and $216\mutextrm{m}$, respectively. XRD analysis showed that the major phase of produced TiNi body is B2 phase. Its average fracture strength and elastic modulus measured under dry condition were $22\pm2$ MPa and $0.18\pm0.01$GPa, respectively. It could be strained up to 7.3 %. The transformation temperatures determined by DSC showed the $M_s$ temperature of $67^{\circ}C$ and $A_f$ temperature of $99^{\circ}C$.

Synthesis of TiCx Powder via the Underwater Explosion of an Explosive

  • Tanaka, Shigeru;Bataev, Ivan;Hamashima, Hideki;Tsurui, Akihiko;Hokamoto, Kazuyuki
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1327-1332
    • /
    • 2018
  • In this study, a novel approach to the explosive synthesis of titanium carbide (TiC) is discussed. Nonstoichiometric $TiC_x$ powder was produced via the underwater explosion of a Ti powder encapsulated within a spherical explosive charge. The explosion process, bubble formation, and synthesis process were visualized using high-speed camera imaging. It was concluded that synthesis occurred within the detonation gas during the first expansion/contraction cycle of the bubble, which was accompanied by a strong emission of light. The recovered powders were studied using scanning electron microscopy and X-ray diffraction. Submicron particles were generated during the explosion. An increase in the carbon content of the starting powder resulted in an increase in the carbon content of the final product. No oxide byproducts were observed within the recovered powders.

Preparation of Fine Titanium Nitride Powders from Titanium Trichloride (염화티타늄(III)으로부터 질화티타늄 미분체의 합성)

  • 이진호;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.916-924
    • /
    • 1990
  • The preparatin of the fine TiN powders by reduction-nitridation of TiCl3-Al-N2 system was attempted in the temperature range from 350$^{\circ}$to 100$0^{\circ}C$. The formation mechanism and kinetics of TiN were examined, and the resultant TiN powder was characterized by means of XRD, PSA and SEM-EPMA methods. TiN was formed at temperatrue higher than $600^{\circ}C$. As an intermediate phase, AlTi was obtained. The apparent activation energy for the formation of TiN was approximately 4.2kcal/mole(600$^{\circ}$~90$0^{\circ}C$). The crystallite size and lattice constnat of TiN powder obtained in the temperature range from 600$^{\circ}$to 100$0^{\circ}C$ for 2h at the Al/TiCl3 molar ratio of 1.0 were 160~255A and 4.231~4.239A, respectively. According to PSA measurement, the mean particle size ranged from 14.0 to 14.8${\mu}{\textrm}{m}$.

  • PDF