• Title/Summary/Keyword: TiAlN thin film

Search Result 83, Processing Time 0.023 seconds

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System (TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Oxidation Rates of TiAlLaN Thin Films Deposited by Ion Plating (이온플레이팅법으로 제조된 TiAlLaN계 박막의 산화속도)

  • Seo Sung Man;Lee Kee Sun;Lee Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • TiAl(La)N thin films were oxidized in vacuum of about 7 Pa to reduce the oxidation of WC-Co as a substrate. The oxidation rate constants of the thin films were quantified by an assumption of parabolic oxidation. Increasing AI content significantly decreased the parabolic oxidation rate constant. A simultaneous addition of AI and La was more effective to reduce the oxidation rate. The parabolic oxidation rate constant of $Ti_{0.66}$ $Al_{0.32}$ $La_{ 0.02}$N thin film at 1273 K showed about ten times lower than that of TiN. The addition of a small amount of La with Al induced the preferential formation of dense $\alpha$ $-Al_2$$O_3$ film in oxide film, leading to the abrupt reduction of oxidation rate.

Preparation of precision thin film resistor sputtered by magnetron (IC용 초정밀 박막저항소자의 제조와 특성연구)

  • 하홍주;장두진;조정수;박정후
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • To develope a high precision TiAIN thin film resistor, TiAIN films were deposited on A1$_{2}$03 substrates by reactive planar magnetron cosputtering from Ti and Al targets in an Ar-N$_{2}$ atmosphere. The characteristics of the TiAIN thin film were controlled by changing of the R.F. power on Ti and Al targets, and the N$_{2}$ partial pressure. The high precision TiAIN thin film resistor with TCR(Temperature Coefficient of Resistance) of less than 10ppm/.deg. C was obtained under the R.F. power condition of 160(w)/240(w) to Ti and Al targets at the N$_{2}$ partial pressure of 7*10$^{-5}$ Torr. The composition of these films were investigated by XRD, SEM and EDS.

  • PDF

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices (메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

The R-V Characteristics of $SiO_2 $ & $SiO_2/TiN$ Thin Film Fabricated by RF Sputtering (RF Sputtering으로 제작한 $SiO_2 $$SiO_2/TiN$ 박막의 R-V 특성)

  • 김창석;하충기;김병인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.826-832
    • /
    • 1998
  • In this study the thin films with the structure of Si+SiO$_2$+TiN are made by RF supttering method. TiN, which has small diffusion coefficient and low resistivity, is evaporated between SiO$_2$ and Al layers. It investigates the V-R characteristics depending on the thickness of SiO$_2$ which is used as insulation layer and researches its effects on voltage stability of thin film and varistor. These films show very small resistance valus in negative(-) voltage and large and large value in positive voltage band, and with the increase of voltage, resistance value is rapidly reduced and the satisfactory characteristic of varistor is shown at +1[V]. It is found that resistance value of TiN thin film is small and also TiN thin film has more current than the thin film which is not evaporated by TiN thin film. When Al electrode is evaporated of SiO$_2$ thin film, spiking occurs, but the spiking can be prevented with evaporation of TiN between SiO$_2$ and Al layers and this thin films in made easily because of its good attachment. With the increase of voltage, the resistance is changed into non-linear pattern and the bidirectional varistor characteristic is shown and then its theory can be verified by this experiment. Accordingly, when TiN is evaporated of Si Wafer(n-100), it obtains better voltage-resistance than thin film which is not evaporated and also when varistor character is used electrically to automatic control element such as elimination of flame, power distribution arrestor and constant voltage compensation, satisfactory reproducibilities are expected.

  • PDF

Oxidation Resistance and Preferred Orientation of TiAIN Thin Films (TiAIN 박막의 우선방위와 내산화성)

  • Park, Yong-Gwon;Park, Yong-Gwon;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.676-681
    • /
    • 2002
  • Microstructure, mechanical properties, and oxidation resistance of TiAIN thin films deposited on quenched and tempered STD61 tool steel by arc ion plating were studied using XRD, XPS and micro-balance. The TiAIN film was grown with the (200) orientation. The grain size of TiAIN thin film decreased with increasing Al contents, while chemical binding energy increased with Al contents. When hard coating films were oxidized at $850^{\circ}C$ in air, oxidation resistance of both TiN and TiCN films became relatively lower since the surface of films formed non-protective film such as $TiO_2$. However, oxidation resistance of TiAIN film was excellent because its surface formed protective layer such as $_A12$$O_3$ and $_Al2$$Ti_{7}$$O_{15}$, which suppressed oxygen intrusion.

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Mechanical Properties and Fatigue Characteristics of CrN Coated Ti-6Al-4V alloy (CrN 박막처리된 Ti-6Al-4V 합금의 기계적 성질과 피로특성)

  • Park, Yong-Gwon;Baeg, Chang-Hyung;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.669-675
    • /
    • 2002
  • CrN film coated by AIP method, improved the mechanical properties (Hardness, Roughness, wear and fatigue) of Ti-6Al-4V alloy. The properties were studied using GXRD, XPS, Hardness, Roughness, wear and fatigue testers. CrN thin film thickness was about 7.5$\mu\textrm{m}$ and grew with (111) orientation. Hardness of CrN thin film was very high (Hv 1390) and roughness of the surface layer was greatly improved (Ra=0.063$\mu\textrm{m}$) compared with matrix alloy (Ra=0.321$\mu\textrm{m}$). Such changes of hardness and roughness could be contributed to improving the wear resistance and fatigue life. Striation like pattern with dimples and voids, a typical fatigue fracture mode, was observed throughout the specimen.

Effects of Ti or Ti/TiN Underlayers on the Crystallographic Texture and Sheet Resistance of Aluminum Thin Films (Ti 또는 Ti/TiN underlayer가 Al 박막의 배향성 및 면저항에 미치는 영향)

  • Lee, Won-Jun;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The effects of the type and thickness of underlayers on the crystallographic texture and the sheet resistance of aluminum thin films were studied. Sputtered Ti and Ti/TiN were examined as the underlayer of the aluminum films. The texture and the sheet resistance of the metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For the Ti underlayer, the minimum thickness to obtain excellent texture of aluminum <111> was 10nm, and the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. TiN between Ti and Al could suppress the Al-Ti reaction, while it deteriorated the texture of the aluminum film. For the Ti/TiN underlayer, the minimum Ti thickness to obtain excellent texture of aluminum <111> was 20nm, and the minimum thickness of TiN to function as a diffusion barrier between Ti and Al was 20nm.

  • PDF