• Title/Summary/Keyword: TiAlN coatings

Search Result 80, Processing Time 0.031 seconds

Friction, Wear and Scuffing Life of Piston Rings With Several Coating for Low Friction Diesel Enging (다양한 박막을 증착한 디젤 엔진용 피스톤링과 실린더 블록의 마찰 마멸 및 스커핑 수명 평가)

  • Ahn, Tae-Sik;Cho, Dae-Hyun;Oh, Chung-Soon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • Wear and scuffing tests were conducted using friction and wear measurement of piston rings and cylinder blocks in low friction diesel engine. The frictional forces, wear amounts and cycles to scuffing in boundary lubricated sliding condition were measured using the reciprocating wear tester. The cylinder blocks were used as reciprocating specimens, and the piston rings with several coatings were used as fixed pin. Several coatings were used such as DLC, TiN, Cr-ceramic and TiAlN in order to improve the tribological characteristics. From the tests wear volume of piston ring surfaces applied various coatings were compared. During the tests coefficients of friction were monitored. Test results showed that DLC coatings showed good tribological properties. TiN and Cr-ceramic coated rings showed good wear resistance properties but produced high friction.

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Effect of Nitride Coatings on Lifetime of Cold Forging Dies for Piston of Brake Master Cylinders (브레이크 마스터 실린더의 피스톤 단조용 펀치 수명에 대한 질화물 코팅의 영향)

  • Choi, J.M.;Lee, J.W.;Kim, M.K.;Park, J.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.313-318
    • /
    • 2016
  • The plasma vapor coatings on two kinds of die steels have been carried out in order to identify the most optimized conditions. When TiN or TiAlN coatings were carried out on the substrates, the coating layer thicknesses were not significantly changed, and the optimized coating thickness was identified as ~ 5 μm. When the optimized coating conditions and stress analysis were applied to the primary piston dies for fabrication of aluminum cylinders, an extended life time of the die was observed. The methodology for extending the life time of dies was discussed in terms of microstructures and stress analysis.

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

A Study on the Characteristics of $(Ti_{1-x}Al_x)N$ Coatings Deposited by Plasma Enhanced Chemical Vapor Deposition after Heat Treatment (플라즈마 화학 증착법으로 제조된 $(Ti_{1-x}Al_x)N$ 박막의 열처리에 따른 특성 평가)

  • 이승훈;임주완
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.28-28
    • /
    • 2001
  • $TiCl_44,{\;}AICl_3,{\;}H_2,{\;}Ar,{\;}NH_3$ 기체를 사용하여 플라즈마 화학 증착법으로 $(Ti_{1-x}AI_x)N$ 피막을 증착한 후 진공열처리 실험을 통해 열처리 전후에 나타나는 피막의 가계적 특성 변화 및 상변화 양상에 대해 연구하였다. 기판으로는 M2 고속도강과 알루미나(${\alpha}-Al_2O_3$)를 사용하였으며, 열처리 실험은 진공 열처리로를 이용하여 $800$ ~ $1100^{\circ}C$ 에서 진행하였다. M2 고속도강 위에 증착한 $(Ti_{1-x}AI_x)N$ 피막은 모두 (200) 우선 방위를 갖고 있었으며, AI의 함량이 높아짐에 따라 입자의 크기가 미세해져 $(Ti_{0.2}AI_{0.8})N$ 의 경우 수 nm의 업자들로 이루어져 있었다. 열처리 시간을 일정하게 하고, 그 온도를 증가시킬 경우 비교적 낮은 온도 영역($~900^{\circ}C$)에서는 경도 증가를 나타내지만, 열처리가 더욱 진행됨에 따라 다시 경도가 감소하는 양상을 나타내었으며, 열처리 온도를 일정하게 하고 열처리 시간을 변화 시킬 경우에도 초기에 경도가 증가하다가 열처리가 진행됨에 따라 경도가 다시 감소하는 현상을 관찰 하였다. 이때 경도증가 정도는 Al 함량이 높을 수록 뚜렷하고 오래 지속되었으며, $(Ti_{0.2}AI_{0.8})N$ 피막의 경우 열처리 전 $2000HK_{0.01}$에서 열처리 후 $4500HK_{0.01}$로, 매우 큰 경도 증가를 나타내었다. 이와 같은 열처리 전후의 기계적 특성 변화는 준 안정상의 $(Ti_{1-x}AI_{x})N$ 피막에서, 열처리가 진행됨에 따라 미세한 AlN 업자가 석출되면서 나타나는 현상으로, 고분해능 전자현미경(HRTEM) 분석을 통해 경도가 증가한 시편의 경우 석출상의 크기가 5nm 이하로 매우 작고 대체로 기지와 연속적인 계면을 형성하나, 열처리가 진행될수록 석 출상의 크기가 커지고 임계크기 이상에 이르면 연속적인 계면은 거의 발견되지 않고, 대부 분 불연속적이고 확연한 계면을 형성함을 관찰 할 수 있었다. 알루미나(${\alpha}-Al_2O_3$) 기판 위에 증착한 $(Ti_{1-x}AI_{x})N$ 피막은 마찬가지로 (200) 우선 방위를 나타내었으나, 그 입자의 크기가 수십 nm로 고속도강위에 증착한 피막에 비해 상당히 크게 형성되었다. 또한 열처리 후에 AIN의 석출이 진행됨에도 불구하고 경도 증가는 나타나지 않고, 열처리가 진행됨에 따라 경도가 감소하는 양상만을 나타내었다. 결국 $(Ti_{1-x}AI_{x})N$ 피막이 열처리 전후에 보아는 기계적 특성의 변화 양상은 열역학적으로 안정한 Wurzite-AlN의 석출에 따른 것으로 AlN 석출상의 크기에 의존하며, 또한 이러한 영향은 $(Ti_{1-x}AI_{x})N$ 피막에 존재하는 AI의 함량이 높고, 초기에 증착된 막의 업자 크기가 작을 수록 클 것으로 여겨진다.

  • PDF

A study on the Cutting Force Variation Comparison between Low CBN and Coated Low CBN Tools in Turning of SCM440 (Low CBN 코팅공구의 SCM440 선삭시 절삭력변화에 관한 연구)

  • Bang, Hong-In;Kim, Tea-Young;Oh, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • In recent years, high hardness steel is used for most of the material in many areas including aircraft, nuclear power, space exploration and automotive parts. Low CBN tools are widely used in industrial field which can effectively process high hardness steel of HRC 45 or harder. The results of this study demonstrated, when high hardness steel, SCM440 is turned with Low CBN tools coated with TiN and TiAlN coatings respectively, that both the thrust force and cutting force tends to increase with more increase in cutting force than thrust force, as the feed rate increases at constant cutting speed. In addition, the size of the cutting force and thrust force does not change with the increased cutting speed at the same feed rate, but the tool life is reduced if the cutting speed is increased to shorten the machining time. Therefore, it is recommended to limit the cutting speed at 250 m/min maximum or less. Furthermore, comparing the cutting force of the three tools at the same cutting condition, Tin coating tool showed the smallest cutting force and Low CBN was the next, and the TiAlN coating tools showed the largest cutting force.

The Effect of Si Content on the Tribological Behaviors of Ti-Al-Si-N Coating Layers (Ti-Al-Si-N 코팅막의 마모거동에 미치는 Si 함량의 영향)

  • Jin, Hyeong-Ho;Kim, Jung-Wook;Kim, Kwang-Ho;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.88-93
    • /
    • 2005
  • Ti-AI-Si-N coating layers were deposited on WC-Co substrates by a hybrid system of arc ion plating and sputtering techniques. The coatings were prepared with different Si contents to investigate the effect of Si content on their mechanical properties and microstructures. The dry sliding wear experiments were conducted on Ti-AI-Si-N coated WC-Co discs at constant load, 3N, and sliding speed, 0.1 m/s with two different counterpart materials such as steel ball and zirconia ball using a conventional ball-on-disc sliding wear apparatus. In the case of steel ball, the friction coefficient of Ti-AI-Si-N coating layers became lower than that of Ti-AI­N coating layers. The friction coefficient decreased with increasing of Si content due to adhesive wear behavior between coating layer and steel ball. On the contrary, in the case of zirconia ball, the friction coefficient increased with increasing of Si content, indicating that abrasive wear behavior was more dominant when the coating layers slid against zirconia ball.