• Title/Summary/Keyword: TiAl Alloys

Search Result 335, Processing Time 0.029 seconds

Machining Characteristics of Ti-6Al-4V Titainum Alloy (Ti-6Al-4V 타이타늄 합금의 선삭특성)

  • 홍우표;김형철;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.818-822
    • /
    • 2000
  • The low density, sustained high temperature strength and excellent resistivity to acid materials have made them strong candidate materials for future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items, Anticipating the general use of this material and development of the titanium alloys in domestic furnaces, the review and the study of the machining parameters for those alloys are deemed necessary. The present studies are concentrated to the machining parameters of the Ti-6Al-4V alloys due to their dominant position in the production of titanium alloys.

  • PDF

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys (Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF

Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications (치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성)

  • Jung, Jong-Hyun;Noh, Hyeong-Rok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

A study on corrosion resistance of Ti-Nb alloys by Nb contents (Nb 함량에 따른 Ti-Nb계 합금의 내식성에 대한 연구)

  • Park, Geun-Hyeung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • Titanium alloys have been used for dental materials due to it's very good biocompatibility. Ti-6Al-4V alloy instead of pure titanium is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. The Ti-Nb alloys has designed and examined corrosion resistance. Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb(${\alpha}+{\beta}$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test in the solution of 0.9% NaCl and 5% HCl. The results can be summarized as follows: 1) For the corrosion test in the solution of 0.9% NaCl and 5% HCl, the corrosion behaviour of Ti-Nb alloys was similar to ASTM grade 2 CP Ti. 2) The corrosion resistance of Ti-20Nb alloy was better than that of CP-Ti, Ti-3Nb, Ti-40Nb alloy in 0.9% NaCl and 5% HCl, solutions.

  • PDF

Chemical Homogeneity and Dispersoid Formation in Mechanically Alloyed Al-Ti Composite Metal Powders (기계적 합금화한 Al-Ti 복합금속분말의 화학적 균질성과 분산상 형성)

  • Lee, Kwang-Min;Moon, In-Hyung
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 1992
  • Chemical homogeneity and dispersoid formation in mechanically alloyed Al-Ti composite metal powders were investigated in order to fabricate the high temperature Al-Ti alloys. The homogeneity of composite particles was able to be obtained by MA milling time more than 10 hours with the milling velocity of 400 rpm. The amounts of titanium, carbon and oxygen elements in MA Al-Ti alloys by chemical analysis were 8.2, 1.135 and 0.233 wt.%, respectively. The amount of carbon analyzed corresponds to 90 pet. of carbon contained the PCA of stearic acid. TEM analysis has revealed the presence of the rounded $Al_3Ti$ dispersoids with the size of 250nm and the $Al_4C_3$ dispersoids of cylindrical shape with a size of 50nm in thickness and 150nm in length. Also, the some rounded $Al_2O_3$ dispersoids with a size of about 20nm were found in grain boundaries as well as in matrix.

  • PDF

Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature (Ti-합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Park, J.G.;Park, N.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.230-235
    • /
    • 2010
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.