• Title/Summary/Keyword: Ti-nitride steel

Search Result 47, Processing Time 0.026 seconds

Macroscopic Wear Characteristics of Ceramics under the Rolling Contact (구름접촉시 세라믹의 거시적 마모특성)

  • Kim, Seock-Sam;Koto, Kohji;Hokkirigawa, Kzauo
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The wear tests of ceramic materials in dry rolling contact were carried out at room temperature to investigate their macroscopic wear characteristics. Both point contact and line cootact were adapted in the wear tests of them. Ceramic materials used in these tests were silicon nitride, silicon carbide, cermet of TiN and TiC, titania, and alumina. The wear test of the bearing steel was carried out to compare to the wear test results of the ceramic materials. The results showed that the wear rate of silicon nitride was smaller than any other ceramic materials and bearing steel. In the steady wear, the wear volume of ceramic materials increases linearly with the rolling distance. It was also found from the experimental results that fracture toughness and surface roughness dominate the wear process of ceramic materials in dry rolling contact.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Evaluation of Titanium-nitride Coated Crown: Surface Hardness, Corrosion Resistance and Color Sustainability (타이타늄-질소 코팅된 금속관에 대한 평가: 표면 경도, 부식 저항성, 색조 안정성)

  • Kim, Hyojin;Lim, Sumin;Kim, JinYoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.344-351
    • /
    • 2021
  • The purpose of this study was to compare surface hardness between titanium-nitride coated crowns (TiNCs) and stainless steel crowns (SSCs), and to evaluate the corrosion resistance and color sustainability of TiNCs. Ten TiNCs and 10 SSCs were used for the hardness test. Measurement was performed 30 times for each type of crowns, and the mean values were compared. Metallic raw material plates (before being processed into crowns) of TiNCs and SSCs were prepared for the corrosion resistance test. The total amounts of metal ion releases in the test solution were detected by inductively coupled plasma-optical emission spectrometry. Five TiNCs were subjected to the color sustainability test by applying repetitive brushing forces. The mean hardness values of TiNC group and SSC group were 395.53 ± 105.90 Hv and 278.70 ± 31.45 Hv respectively. Hardness of TiNCs were significantly higher than that of SSCs. The total amounts of metal ion releases from the materials of TiNCs and SSCs satisfied the criterion in International Organization for Standardization 22674. The results mean that TiNCs and SSCs were not harmful in an acidic environment. The golden coating was stable against the repetitive physical stimulations for a given period time.

High Temperature Tribological Behaviors of Nitride Based Ceramic Coatings (나이트라이드계 세라믹 코팅의 고온 마모, 마찰거동)

  • 김장엽;임대순;이상로;백운승
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.83-86
    • /
    • 1996
  • In this study, CrN, TiN and TiN + CrN coatings have treated onto the steel substrates by ion plating to improve their tribological behaviors. Some of the specimens were ion nitriding treated to study the effect of ion nitriding on wear behavior. The wear tests were performed with these specimens by ball-onplate type and disc-on-plate type wear tester. It was demonstrated that ion nitriding treatment improve wear resistance of the coatings. The results of high temperature wear tests indicated that the specimens coated with CrN were exhibited the better wear resistance properties than the specimens with TiN coatings

  • PDF

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool (Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.

The Characteristic and Formation of Ti(B,N) Films on Steel by EA Hot Filament CVD (EA hot filament CVD system을 이용하여 금형공구강에 증착한 Ti(B,N)박막의 합성과 특성에 관하여)

  • Yoon, Jung-H.;Choi, Yong;Choe, Jean-I.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.585-589
    • /
    • 2012
  • The characteristics of interface layer and the effect of mole fraction of inlet gas mixture($B_2H_6/H_2/N_2/TiCl_4$) on the microstructure of Ti(B,N) films were studied by microwave plasma hot filament CVD process. Ti(B,N) films were deposited on a substrate(STD-61) to develop a high performance of resistance wear coating tool. Ti(B,N) films were obtained at a gas pressure of 1 torr, bias voltage of 300 V and substrate temperature of $480^{\circ}C$ in $B_2H_6/H_2/N_2/TiCl_4$gas system. It was found that TiN, $TiB_2$, TiB and hexagonal boron nitride(h-BN) phases exist in thin layer on the STD-61.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated ball and steel disk in sliding (TiN코팅된 볼과 스틸디스크의 미끄럼운동 시 접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • 조정우;박동신;임정순;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.109-116
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to form the oxide layer and the characteristics of the oxide layer formation are investigated. AIS152100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4um in coating thickness. AISI1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in ambient for forming oxide layer on the contact parts and in nitride environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

  • PDF

Influence of scaling procedures on the integrity of titanium nitride coated CAD/CAM abutments

  • Gehrke, Peter;Spanos, Emmanouil;Fischer, Carsten;Storck, Helmut;Tebbel, Florian;Duddeck, Dirk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.197-204
    • /
    • 2018
  • PURPOSE. To determine the extent of treatment traces, the roughness depth, and the quantity of titanium nitride (TiN) removed from the surface of CAD/CAM abutments after treatment with various instruments. MATERIALS AND METHODS. Twelve TiN coated CAD/CAM abutments were investigated for an in vitro study. In the test group (9), each abutment surface was subjected twice (150 g vs. 200 g pressure) to standardized treatment in a simulated prophylaxis measure with the following instruments: acrylic scaler, titanium curette, and ultrasonic scaler with steel tip. Three abutments were used as control group. Average surface roughness (Sa) and developed interfacial area ratio (Sdr) of treated and untreated surfaces were measured with a profilometer. The extent of treatment traces were analyzed by scanning electron microscopy. RESULTS. Manipulation with ultrasonic scalers resulted in a significant increase of average surface roughness (Sa, P<.05) and developed interfacial area ratio (Sdr, P<.018). Variable contact pressure did not yield any statistically significant difference on Sa-values for all instruments (P=.8). Ultrasonic treatment resulted in pronounced surface traces and partially detachment of the TiN coating. While titanium curettes caused predominantly moderate treatment traces, no traces or detectable substance removal has been determined after manipulation with acrylic curettes. CONCLUSION. Inappropriate instruments during regular plaque control may have an adverse effect on the integrity of the TiN coating of CAD/CAM abutments. To prevent defects and an increased surface roughness at the transmucosal zone of TiN abutments, only acrylic scaling instruments can be recommended for regular maintenance care.