• Title/Summary/Keyword: Ti-Mo-Fe

Search Result 101, Processing Time 0.015 seconds

Effect of Mo Addition on the Sinterability and Mechanical Properties of TiB$_2$-Fe Cermets (TiB$_2$-Fe 서메트의 소결성 및 기계적성질에 미치는 Mo첨가의 영향)

  • 최덕순
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.471-477
    • /
    • 1999
  • Fe and Fe-Mo binder were used to produce TiB2 based cermet by a pressureless sintering. The densification behaviour of TiB2-Fe-Mo cermet during liquid-phase sintering in argon was studied in relation to binder phase charactertics. The effects of Mo addition and sintering condition on the sintering behaviour and mechanical properties were also investigated. TiB2-based cermets with Fe-Mo binder composition showed a better sinterability than the cermets with only Fe binder. In TiB2-Fe-Mo cermet higher densities in the wide temperature range were obtained and also fully densified sintered cermet were obtained at 1873K The enhancement in the densification phenomenon of TiB2-Fe-Mo system can be explained by improved liquid phase wettability associated with the roles of Mo components as solute atoms. When Fe-Mo binders were used cermets with a finer grain size and enhanced mechanical properties wereproduced and new phases such as Fe2B and Mo2FeB2 were observed in the sintered cermet. The highest bending strength was obtained from the 20vol% Fe-Mo cermet and these hardness-fracture toughness combination in the wide binder compositions is better than that of TiB2-Fe cermet. In order to improve mechanical properties microstructure control with high purity powders is desirable because high purity powders prevent the formation of Fe2B and Mo2FeB2 phase which comsume the ductile binder phase.

  • PDF

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys (Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화)

  • Hwang, HyoWoon;Lee, YongJae;Park, JiHwan;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of beta-stabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly beta-stabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.

New Hypothesis "Exhaustion of Diffusion-Contributable Vacancies in Core/Rim Structure"

  • Hayshi, Koji;Yanaba, Yutaka
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.8-8
    • /
    • 2002
  • TiC core/(Ti,Mo)C rim structure in TiC-$Mo_2C$-Ni base cermet which is generally prepared by sintering below 145$0^{\circ}C$ had been believed to be generated by the solid diffusion of Mo atoms 1 into TiC grains (D. Moskowitz and M.Humenik, 1r.:1966). Afterward, it was clarified that the c core/rim structure is generated by solution/re-precipitation mechanism : (1) $Mo_2C$ grains and s small TiC grains dissolve into the Ni liquid, (2) the dissolved Mo, Ti and C atoms migrate to the s surface of TiC coarse grains, (3) the Mo, Ti and C precipitate on the surface of TiC coarse g grains and form (Ti,Mo)C solid solution rim, and (4) the Ostwald ripening (grain growth by s solution/re-precipitation mechanism) of TiC-core/(Ti,Mo)-rim grains continues, and thus the w width of (Ti,Mo)C rim (at the same time, the grain size) increases with sintering time, etc. ( (H.Suzuki, K.Hayashi and O.Terada: 1973). The TiC-core was found not to disappear even by s sintering at 190$0^{\circ}C$ (ibid.: 1974) Recently, FeSi core/$Fe_2Si_5$-rim structure in Fe-66.7at%Si thermoelectric aIloy was found to also h hardly shrink and disappear by long heating at an appropriate temperature (1999: M.Tajima and K K.hayashD. Then, the authors considered its cause, and clarified experimentaIly that the disappearance of FeSi-core/$Fe_2Ski_5$-rim structure could be attributed to the exhaustion of diffusion-contributable vacancies in core/rim structure (N.Taniguchi and K.Hayashi:2001). At p present, the authors and my coworker are investigating whether the non-disappearance of TiC c core can be explained also from the new hypothesis "Exhaustion of diffusion-contributable v vacancies in corelrim structure".ure".uot;.

  • PDF

Magnetic Properties of $NdFe_{10.7}TiB_{0.3}N_x$ and $NdFe_{10.7}TiMo_{0.3}N_x$ ($NdFe_{10.7}TiB_{0.3}N_x$$NdFe_{10.7}TiMo_{0.3}N_x$의 자기특성)

  • Kim, Yun-Bae;Kim, Hui-Tae;Kim, Chang-Seok;Kim, Taek-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.239-243
    • /
    • 1992
  • It has been found that B is very effective for the increase of magnetization and Curie temperature in $NdFe_{11}TiN_x$-type compounds having $ThMN_{12}$-type structure. Experimental results have shown that magnetization and Curie temperature of $NdFe_{10.7}TiB_{0.3}N_x$ are 148 $Am^2$/kg and $560^{\circ}C,$ respectively, by about 20 $Am^2$/kg and $90^{\circ}C$ higher than those of $NdFe_{10.7}Ti_{1.3}N_x.$ On the other hand, Mo is effective for the increase of anisotropy field, and it seems to strongly inhibit the formation of ${\alpha}-Fe$ phase during the nitrification treatement. The anisotropy field of $NdFe_{10.7}TiMo_{0.3}N_x$ is about 7960 kA/m (100 kOe) which is about 1590 kA/m (20 kOe) higher than that of $NdFe_{10.7}Ti_{1.3}N_x$.

  • PDF

Magnetic Hardening of Rapidly Solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ Compounds (급속냉각된 $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ 화합물에서 생성된 신 강자성상)

  • Choong-Jin Yang;E. B. Park;S. D. Choi
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.226-232
    • /
    • 1994
  • Rapidly solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ compound were found to crystallize in the ${Sm(Fe,\;M)}_{7}$ based stable magnetic phase by introducing a second transition element into the Sm-Fe binary system. The ${Sm(Fe,\;M)}_{7}$ phase exhibits the highest Curie temperatuer ($T_{c}=355^{\circ}C$) ever Known in the Sm-Fe magnetic systems with a quite high intrinsic coercivity($_{i}H_{c}=3~6\;kOe $). The ${Sm(Fe,\;M)}_{7}$ phase remains stable even after annealing if once form during the rapid solidification. The primary reason for the high coercive force is due to the fine grain size($2000~8000\;{\AA}$)of the magnetic ${Sm(Fe,\;M)}_{7}$ matrix phase, and the enhanced Curie temperature is attributed to the extended solid-solubility of the additive transition elements in Fe matrix, which leads to volume expansion of the ${Sm(Fe,\;M)}_{7}$ cell causing an enhanced coupling constant of Fe atoms.

  • PDF

A study of fabrication process and mechanical property in TiC-Cr-Mo-Fe Composite (TiC-Cr-Mo-Fe합금의 제조공정과 기계적 성질에 관한 연구)

  • 이호성;신현준;김성원
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.91-94
    • /
    • 2001
  • Powder Metallurgy method have been used to fabricate TiC base composite with ferrous binder. TiC base composite has versatile hardness and is usable as sintered, or after heat treatment as required by the given applications. Smooth, round TiC grains impart high wear resistance and lubricity as well known characteristics of this composite. Annealed composite can be formed by conventional machining and be hardened up to 70 H$\_$R/C in vacuum. The optimizing fabrication process enables this composite to improve mechanical properties in heat, wear and corrosion environments. This study has examine the relationship between fabrication condition and mechanical property in TiC-Cr-Mo-Fe Composite.

Magnetic Properties of $ThMn_{12}-type$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$>$Ti_{1.2}Mo_{0.1}$ ($ThMn_{12}$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$의 미세구조 및 자기적 성질 연구)

  • 안성용;이승화;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • We have studied crystallographic and magnetic properties of $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ by Mossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ has pure a single phase, whereas $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha$-Fe, conformed with X-ray diffractometry and Mossbauer measurements. The $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ has a $ThMn_{12}-type$ tetragonal structure with $a_0=8.637{\AA}$ and $c_0=4.807{\AA}$. The Curie temperature ($T_c$) is 600 K from the result of Mossbauer measurement performed at various temperatures ranging from 13 to 800 K. Each spectrum of below $T_c$ is fitted with five subspectra of Fe sites in the structure ($8i_1, 8i_2, 8j_2, 8j_1, 8f$). The area fractions of the subspectra at room temperature are 12.3%, 14.0%, 21.0% 11.8%, 40.9%, respectively. Magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, an magnetic moment observed at about 160 K in $NdFe_ {10.7} Ti_{1.2}Mo_{0.1}$ are attributed to spin reorientations. The average hyperfine field of the $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.34(T/T_C)^{3/2}-0.14(T/T_C)^{5/2}$ for $T/T_c<0.7$, indicative of spin wave excitation. The Debye temperatures of $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ is found to be Θ=340$\pm$5 K.

  • PDF