DOI QR코드

DOI QR Code

Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys

Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화

  • Hwang, HyoWoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Lee, YongJae (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Park, JiHwan (Material Technical Innovation Group (MTIG)) ;
  • Lee, Dong-Geun (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 황효운 (순천대학교 신소재공학과) ;
  • 이용재 (순천대학교 신소재공학과) ;
  • 박지환 ((주)엠티아이지) ;
  • 이동근 (순천대학교 신소재공학과)
  • Received : 2022.08.26
  • Accepted : 2022.08.28
  • Published : 2022.08.28

Abstract

Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of beta-stabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly beta-stabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.

Keywords

Acknowledgement

This work was supported by the Korean government MOTIE (the Ministry of Trade, Industry and Energy), the Korea Evaluation Institute of Industrial Technology (KEIT) (No. 20010047) and the Korea Institute for Advancement of Technology (KIAT) (No. P0002019).

References

  1. Y. J. Kim: J. Powder Mater., 11 (2004) 265.
  2. D. G. Lee, S. H. Lee and Y. T. Lee: Mater. Sci. Eng. A, 486 (2008) 19.
  3. R. R. Boyer: Adv. Perform. Mater., 2 (1995) 349.
  4. G. Lutjering and J. C. Williams, Titanium: Chapter 10 - Special Properties and Applications of Titanium, Springer Berlin Heidelberg, New York (2007) 383.
  5. P. R Walker, J. LeBlanc and M. Sikorska: Biochemistry, 28 (1989) 3911. https://doi.org/10.1021/bi00441a700
  6. N. Manam, W. Harun, D. Shri, S. Ghani, T. Kurniawan, M. H Ismail and M. Ibrahim: Mater. Sci. Eng. A, 701 (2017) 698.
  7. Y. J. Hwang and D. G. Lee: J. Nanosci. Nanotechnol., 19 (2019) 3811.
  8. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li : Materials., 7 (2014) 1709.
  9. A. Yasser, M. A.-H. Gepreel, K. Sengo, O. Satoshi and O. Takeaki: Mater. Sci. Eng. C, 99 (2019) 552.
  10. P. G. Allen, P. J. Bania, A. J. Hutt and Y. Combres: Titanium '95 Science and Technology. proceedings of the Eighth World Conference on Titanium, International Convention Centre, Birmingham, UK, 22-26 October 1995.
  11. P. A. Blenkinsop, W. J. Evans, H. M. Flower: The Institue of Metals : Great Britain, UK.
  12. Y. T. Lee: Titanium, Steel & Metal News Co. Ltd : Seoul, Korea (2009) 61.
  13. M. Gepreel : J. Mech. Behav. Biomed. Mater., 20 (2013) 407.
  14. W.-F. Ho: J. Alloys Compd., 464 (2008) 580.
  15. D.-J. Lin, C.-C. Chuang, J.-H. Chern. Lin, J.-W. Lee, C.-P. Ju and H.-S. Yin: Biomaterials, 28 (2007) 2582.
  16. P. F. Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, A. Trenggono, S. Champagne, H. Hermawan and T. Narushima: Mater. Des., 110 (2016) 414.
  17. Y. Bao, M. Zhang, Y. Zhang, J. Yao, Z. Yao, M. Xi and X. Sun: J. Porous Mater., 21 (2014) 913.
  18. V. Jindal, A. Sarda, A. Degnah and K. R. Chandran: Adv. Powder Technol., 30 (2019) 423.
  19. H. Nakajima and M. Koiwa: Diffusion in Titanium, ISIJ Int., 31 (1991) 757.
  20. A. Carman, L. Zhang, O. Ivasishin, D. Savvakin, M. Matviychuk and E. Pereloma: Mater. Sci. Eng. A, 528 (2011) 1686.
  21. O. Takeda and T. H. Okabe: JOM, 71 (2019) 1981.
  22. D. Santos, M. D. S. Pereira, C. Cairo, M. Graca and V. Henriques: Mater. Sci. Eng. A, 472 (2008) 193.
  23. L. Bolzoni: Met. Powder Rep., 74 (2019) 308.
  24. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A, 243 (1998) 244.
  25. M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada and K. Kubo: 1992Proc. of seventh world conf. on titanium, San Diego (TMS), (1993) 217.
  26. S. M. Shin, C. Zhang and K. S. Vecchio: Mater. Sci. Eng. A, 702 (2017) 173.
  27. M. Abdel-Hady, K. Hinoshita and M. Morinaga: Scr. Mater., 55 (2006) 477.
  28. J. O. Flynn and S. F. Corbin: J. Alloys Compd., 618 (2015) 437.
  29. L. Meng, Y. Zhang, X. Zhao and D. Zhang: Mater. Sci. Eng. A, 825 (2021) 141877.
  30. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J. C. Russ and H. L. Fraser: Mater. Sci. Eng. A, 372 (2004) 191.
  31. Y. Liu, L. Chen, H. Tang, C. T. Liu, B. Liu and B. Huang: Mater. Sci. Eng. A, 418 (2006) 25.
  32. S. Ehtemam-Haghighi, H. Attar, I. V. Okulov, M. S. Dargusch and D. Kent: J. Alloys Compd., 853 (2021) 156768.