• Title/Summary/Keyword: Ti-Al alloy

Search Result 649, Processing Time 0.028 seconds

Design & Development of KSLV-II Ullage Motor (KSLV-II 가속모터 설계 및 개발)

  • Oh, Jisung;Lee, Gwan Joo;Kim, Sujeong;Kim, Hanjoon;Park, Euiyong;Kwon, Hyukho;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1122-1126
    • /
    • 2017
  • KSLV-II ullage motor is a type of the separation motor of Korea Space Launch Vehicle. Simultaneously operates with the retro Motor to perform the stage separation. The internal ballistics design, application of propellant composition, and the design of the combustion chamber and the canted nozzle were performed in accordance with the target performance of the ullage motor. Ti-6Al-4V alloy was applied to the combustion as material of chamber and nozzle. The heat resistant material of the nozzle was selected to ensure the heat resistance of the propellant containing a large amount of aluminum. And the combustion performance of the ullage motor satisfying the KSLV-II requirements was secured by performing the ground combustion test.

  • PDF

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Effects of Mn and Heat-input on the Mechanical Properties of EGW Welds (일렉트로 가스 용접부의 기계적 성질에 미치는 Mn 및 입열량의 영향)

  • Kim, Nam In;Jeong, Sang Hoon;Lee, Jeong Soo;Kang, Sung Won;Kim, Myung Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.195-201
    • /
    • 2009
  • This paper is concerned with effects of Mn and heat-input on the mechanical properties of EGW welds. Four different kinds of welding consumables were fabricated by varying Mn contents such as 1.3, 1.5, 1.7, 2.0%Mn and each consumable was welded for EGW on four heat-input conditions between 190 and 340 KJ/Cm. Mn contents were decreased as heat-input increases and alloy elements (C, Si, Ti, B, Al) to deoxidize easily also revealed similar tendency to Mn. Their microstructure, Charpy impact property and strength were investigated, and it is found that Charpy impact property and strength exhibit a strong dependence on change of microstructure by Mn contents and heat-input. The increase of Mn contents or the decrease of heat-input made the microstructure fine and increase volume fraction of acicular ferrite, thereby leading to the great improvement of Charpy impact property and strength. In case of single EGW, optimum Mn contents are over 1.7% for the toughness and strength.

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF