• Title/Summary/Keyword: Ti-6Al-4V Alloy Bolt

Search Result 6, Processing Time 0.021 seconds

Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트 성형 기술 개발)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.87-90
    • /
    • 2008
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

  • PDF

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process (온간 단조공정을 이용한 타이타늄합금 볼트 제조기술)

  • Lim, S.G.;Kim, J.H.;Kim, J.H.;Lee, C.H.;Bong, J.K.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF

A Study of the Microstructure Properties and Mechanical/electrochemical Behavior of Ti Alloy for Fastening (체결용 Ti 합금의 미세조직 특성 및 기계적/전기화학적 거동 분석 연구)

  • Lee, H.J.;Anaman, Sam Yaw;Choi, J.M.;Lee, K.H.;Park, L.J.;Cho, H.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.151-159
    • /
    • 2022
  • Ti alloys are used in a wide range of applications, especially for aviation and medical purposes, because of their high specific strength and excellent corrosion properties. When subjected to various manufacturing processes, one of the most popular Ti alloys, Ti-6Al-4V, exhibits a variety of microstructural and mechanical properties that makes it an attractive lightweight metal. The purpose of this study was to analyze the microstructure and mechanical properties of Ti alloy wires. Subsequently, the microstructure and electrochemical behavior of Ti alloy bolts produced from these wires were analyzed. The Ti alloy wires are manufactured with different diameters (6.22, 7.81 mm alloys), and their microstructures are measured using electron backscatter diffraction. Recrystallization was observed to occur significantly in the 7.81 alloy than in the 6.81 alloy, and the strain distribution of 7.81 alloy is seen to be likely more uniform than 6.22 alloy. Ti alloy bolt was then forged under moderate temperature by using the 7.81 alloy. Results of the electrochemical analysis indicate that the Ti alloy bolt has excellent corrosion resistance.

Titanium alloy bolt hot forging process analysis through plastic working analysis (소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석)

  • Choi, Doo-Sun;Kim, Tae-Min;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Kim, Do-Un
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

Assessment of titanium alloy bolts for structural applications

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • This paper explored the viability of utilising titanium alloy bolts in the construction industry through an experimental programme, where a total of sixty-six titanium alloy (Ti/6Al/4V) bolts were tested under axial tension, pure shear and combined tension and shear. In addition, a series of Charpy V-notch specimens machined from titanium alloy bolts, conventional high-strength steel bolts, austenitic and duplex stainless steel bolts were tested for impact toughness comparisons. The obtained experimental results demonstrated that the axial tensile and pure shear capacities of titanium alloy bolts can be reasonably estimated by the current design standards for steel structures (Eurocode 3, AS 4100 and AISC 360). However, under the combined tension and shear loading conditions, significant underestimation by Eurocode 3 and unsafe predictions through AS 4100 and AISC 360 indicate that proper modifications are necessary to facilitate the safe and economic use of titanium alloy bolts. In addition, numerical models were developed to calibrate the fracture parameters of the tested titanium alloy bolts. Furthermore, a design-based selection process of titanium alloy bolts in the structural applications was proposed, in which the ultimate strength, ductility performance and corrosion resistance (including galvanic corrosion) of titanium alloy bolts was mainly considered.