• Title/Summary/Keyword: Ti precursor

Search Result 293, Processing Time 0.024 seconds

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Preparation of Photocatalysts by Hydrothermal Precipitation Method and Their Photocatalytic Performance of Brilliant Blue FCF (수열합성법에 의한 광촉매 제조 및 Brilliant Blue FCF 분해 성능)

  • Kim, Seok-Hyeon;Jeong, Sang-Gu;Na, Seok-En;Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.152-156
    • /
    • 2016
  • Experimental research on the preparation of photocatalyst for the decomposition of brilliant blue FCF ($C_{37}H_{31}O_9N_2S_3Na_2$) was performed. $TiO_2$ and ZnO powders were prepared from titanium (IV) sulfate and zinc acetate at low reaction temperature and atmospheric pressure by hydrothermal precipitation method without calcination. In addition, $TiO_2$ was prepared with cationic surfactant CTAB (Hexadecyltrimethyl ammonium bromide) at the same conditions. The physical properties of prepared $TiO_2$ and ZnO, such as crystallinity, average particle size and absorbance, were investigated by XRD, Zeta-potential meter and DRS. And, the photocatalytic degradation of brilliant blue FCF has been studied in the batch reactor under UV radiation. For the photocatalysts prepared without CTAB, $TiO_2$ has smaller particle size and larger absorbance and photocatalytic reaction rate than ZnO. And $TiO_2$, prepared with CTAB whose concentration is 1/10 of that of precursor, shows 15% higher than that prepared without CTAB in final photocatalytic degradation ratio of brilliant blue FCF.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Luminescent Properties of $SrTiO_3:Pr^{3+}$ Phosphor Coated with $SiO_2$ and $Al_2O_3$ by Sol-Gel Method (졸-겔법에 의한 $SrTiO_3:Pr^{3+}$ 형광체의 $SiO_2$$Al_2O_3$ 코팅에 따른 발광특성)

  • Lee, Dong-Kyu;Lim, Mun-Hyuk;Lee, Jin-Hwa;Kim, Tae-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2006
  • Field emission display(FED) is actively investigated in view of the development of full color flat-panel display, which can replace some cathode-ray tube(CRT). Thus, the development of new phosphors appropriate for FED is urgently needed and has been actively investigated. In this work, $SrTiO_3:Pr^{3+}$ phosphor was prepared by sol-gel method and the coating was applied by sol-gel method combined with sonication on these phosphor's surface into diluted precursor solution. It was found that very fine particles of coating material were formed on phosphor's surface. The luminescent intensity of $SrTiO_3:Pr^{3+}$ phosphor coated with $SiO_2$ and $Al_2O_3$ was considerably increased without any noticeable change in color chromaticity. The optimum concentration of coating material was found to be 1wt% and the optimum pH value of the solution was 10.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Growth of Textured CoFe2O4 Thin Films on Platinized Silicon Prepared by a Sol-Gel Method

  • Mustaqima, Millaty;Lee, Min Young;Kim, Deok Hyeon;Lee, Bo Wha;Liu, Chunli
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.227-231
    • /
    • 2014
  • We fabricated textured polycrystalline $CoFe_2O_4$ thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrate through a sol-gel method. We varied the thickness of the films, by using precursor solutions with different concentrations of 0.1, 0.2, and 0.3 M, and by depositing 5, 8, or 10 layers on the substrate by spin-coating. X-ray diffraction spectra indicated that when the precursor concentration of the solution was higher than 0.1 M, the spin-coated films were preferentially oriented in the <111> direction. Inspection of the surface morphology by scanning electron microscopy revealed that $CoFe_2O_4$ thin films prepared with 0.2 M solution and 5-time spin-coatings had smoother surface, as compared to the other conditions. Each coating had an average thickness of about 50 nm. The magnetic properties measured by vibrating sample magnetometer showed magnetic anisotropy, as evidenced from the difference in the in-plane and out-of-plane hysteresis loops, which we attributed to the textured orientation of the $CoFe_2O_4$ thin films.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

Effect of $PbTiO_3$ Concentration on the Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ 계 완화형 강유전체의 특성에 미치는 $PbTiO_3$ 첨가량의 변화 -I.유전특성 및 초전특성-)

  • 박재환;흥국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.391-398
    • /
    • 1996
  • In order to understand the electrostrictive behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) solid solutions the dielectric constants and the electric-field-induced strains in (1-x)PMN-xPT (x=0.0-0.4) were investigated in the temperature range -5$0^{\circ}C$-20$0^{\circ}C$. Powder of (1-x)Pb(Mg2/3Nb2/3)O3-xPbTiO3 (x=0.0, 0.1, 0.2, 0.3, 0.35, and 0.4) were prepared from the oxide forms of Pb, Mg, Nb and Ti via a columbite precursor method As the amount of PbTiO3 increases the temperature of maximum dielectric constant(T$\varepsilon$max) increases and the phase transition become less diffusive. The strain maximum occurs only when the diffuse phase transition occurs from rhombohedral to cubic or rhombohedral to tetragonal as in x=0.1-0.35 The strains monotonically decrease with temperature in the materials in which phase transition occurs from tetragonal to cubic as in x=0.4.

  • PDF