DOI QR코드

DOI QR Code

Preparation of Photocatalysts by Hydrothermal Precipitation Method and Their Photocatalytic Performance of Brilliant Blue FCF

수열합성법에 의한 광촉매 제조 및 Brilliant Blue FCF 분해 성능

  • Kim, Seok-Hyeon (Department of Chemical Engineering, Pukyoung National University) ;
  • Jeong, Sang-Gu (Department of Chemical Engineering, Pukyoung National University) ;
  • Na, Seok-En (Department of Chemical Engineering, Pukyoung National University) ;
  • Koo, Su-Jin (Institute of Defence Science & Technology, Pukyoung National University) ;
  • Ju, Chang-Sik (Department of Chemical Engineering, Pukyoung National University)
  • 김석현 (부경대학교 화학공학과) ;
  • 정상구 (부경대학교 화학공학과) ;
  • 나석은 (부경대학교 화학공학과) ;
  • 구수진 (부경대학교 방위과학연구소) ;
  • 주창식 (부경대학교 화학공학과)
  • Received : 2015.08.17
  • Accepted : 2015.10.01
  • Published : 2016.04.01

Abstract

Experimental research on the preparation of photocatalyst for the decomposition of brilliant blue FCF ($C_{37}H_{31}O_9N_2S_3Na_2$) was performed. $TiO_2$ and ZnO powders were prepared from titanium (IV) sulfate and zinc acetate at low reaction temperature and atmospheric pressure by hydrothermal precipitation method without calcination. In addition, $TiO_2$ was prepared with cationic surfactant CTAB (Hexadecyltrimethyl ammonium bromide) at the same conditions. The physical properties of prepared $TiO_2$ and ZnO, such as crystallinity, average particle size and absorbance, were investigated by XRD, Zeta-potential meter and DRS. And, the photocatalytic degradation of brilliant blue FCF has been studied in the batch reactor under UV radiation. For the photocatalysts prepared without CTAB, $TiO_2$ has smaller particle size and larger absorbance and photocatalytic reaction rate than ZnO. And $TiO_2$, prepared with CTAB whose concentration is 1/10 of that of precursor, shows 15% higher than that prepared without CTAB in final photocatalytic degradation ratio of brilliant blue FCF.

Brilliant blue FCF에 대한 분해 특성이 우수한 광촉매를 제조하는 연구를 수행하였다. 먼저 전구체인 titanium (IV) sulfate와 zinc acetate에 침전제로 각각 NaOH, $NH_4OH$를 첨가하여 비교적 낮은 온도와 상압에서 중간상 형성 없이 1단계의 수열합성법으로 $TiO_2$와 ZnO를 제조하였다. $TiO_2$의 경우 제조과정에 양이온성 계면활성제인 CTAB을 첨가하여 제조하기도 하였다. 제조된 $TiO_2$와 ZnO의 결정성, 입자크기, 흡광도 등과 같은 물리적 특성을 확인하기 위해 XRD, Zeta-potential meter, DRS 등을 사용하여 분석하였다. 광촉매적 특성을 확인하기 위해 회분식 반응장치를 이용하여 UV 조사 하에서 brilliant blue FCF의 광분해 특성을 조사하였다. CTAB을 첨가하지 않은 경우, $TiO_2$가 ZnO보다 입자가 작고 흡광도와 광촉매 반응의 초기속도가 큰 것을 확인할 수 있었다. 그리고 동일한 제조조건에서 CTAB을 전구체인 $Ti(SO_4)_2$ 농도의 1/10 첨가하여 제조한 $TiO_2$는 CTAB을 첨가하지 않은 것보다 brilliant blue FCF의 최종 제거율이 약 15% 정도 우수하였다.

Keywords

References

  1. Lee, M. S., Ju, C. S., Lee, G. D. and Hong, S. S., "Effect of the Water/ Surfactant Molar Ratio (W0) on Synthesis of Nanosized $TiO_2/SiO_2$ by W/O Microemulsion and Their Photocatalytic Activity," Korean J. chem. Eng., 41(4), 432-438(2003).
  2. Chang, H., Ma, J., Zhao, Z. and Qi, L., "Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particle," Chem. Mater., 7, 663-671(1995). https://doi.org/10.1021/cm00052a010
  3. Peng, T., Zhao, D., Dai, K., Shi, W. and Hirao, K., "Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity," J. Phys. Chem. B 109, 4947- 4952(2005). https://doi.org/10.1021/jp044771r
  4. Palmisano, L., Augugliaro, V., Schiavello, M. and Sclafani, A., "Influence of Acid-base Properties on Photocatalytic and Photochemical Processes," J. Mol. Catal., 56, 284(1989). https://doi.org/10.1016/0304-5102(89)80192-0
  5. Ollis, D. F., Pelizzetti, E. and Serpone, E., "Destruction of Water Contaminates," Environ. Sci. Technol., 25(9), 1523(1991).
  6. Chen, K., Li, J., Wang, W., Zhan,g Y., Wang, X. and Su, H., "Effect of Surfactants on Microstructure and Photocatalytic Activity of $TiO_2$ Nanoparticles Prepared by the Hydrothermal Method," Mat. Sci. in Semiconductor Processing 15, 20-28(2012). https://doi.org/10.1016/j.mssp.2011.05.007
  7. Jung, M. W. and Kwak, Y. J., "Synthesis and Photoactivity of $SnO_2$- Doped Anatase-Type $TiO_2$ Powder via Polymerization-Complex Route," J. Korean Ind. Eng. Chem. 17(5), 561-564(2006).
  8. Liao, D. L. and Liao, B. Q., "Shape, Size and Photocatalytic Activity Control of $TiO_2$ Nanoparticles with Surfactants," J.Photochemistry and Photobiology A: Chemistry 187, 363-369(2007). https://doi.org/10.1016/j.jphotochem.2006.11.003
  9. Jeong, S. G., Na, S. E., Kim, S. Y. and Ju, C. S., "Preparation of Zinc Oxide by Hydrothermal Precipitation Method And Their Photocatalytic Characterization," Korean J. Chem. Eng., 50(5), 808-814(2012). https://doi.org/10.9713/kcer.2012.50.5.808
  10. Kim, S. H., Na, S. E., Kim, S. S., Kim, S. Y. and Ju, C. S., "The Effect of Additives on the Preparation of Nanosized $TiO_2$ Particles," Korean J. Chem. Eng., 51(4), 195-202(2013). https://doi.org/10.9713/kcer.2013.51.2.195
  11. Na, S. E., Jeong, S. G., Jeong, G. S., Kim, S. Y. and Ju, C. S., "Preparation of Zinc Oxide by Hydrothermal Precipitation And Degradation of Tartrazine," Korea Chem. Eng. Res., 49(6), 752-757(2011). https://doi.org/10.9713/kcer.2011.49.6.752
  12. Liao, D. L. and Liao, B. Q., "Shape, Size and Photocatalytic Activity Control of $TiO_2$ Nanoparticles with Surfactants," J. Photochemistry and Photobiology A: Chemistry 187, 363-369(2007). https://doi.org/10.1016/j.jphotochem.2006.11.003

Cited by

  1. 알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.718