Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.1.0025

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition  

Hwang, Yun-Kyeong (Department of Materials Science and Engineering, Kangwon National University)
Lee, Woo-Young (Department of Materials Science and Engineering, Kangwon National University)
Lee, Se-Jin (Department of Materials Science and Engineering, Kangwon National University)
Lee, Hong-Sub (Department of Materials Science and Engineering, Kangwon National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.1, 2020 , pp. 25-29 More about this Journal
Abstract
This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.
Keywords
Resistive RAM; PMOD; resistive switching; non-volatile memory; patterning process;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 O. Auciello, J. F. Scott, and R. Ramesh, "The Physics of Ferroelectric Memories", Phys. Today, 51(7), 22 (1998).   DOI
2 S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, "Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures", Science, 276(5310), 238 (1997).   DOI
3 J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, "GeSbTe deposition for the PRAM application", Appl. Surf. Sci., 253(8), 3969 (2007).   DOI
4 Z. Li and S. Zhang, "Domain-wall dynamics driven by adiabatic spin-transfer torques", Phys. Rev. B, 70(2), 024417 (2004).   DOI
5 A. Sawa, "Resistive switching in transition metal oxides", Mater. Today, 11(6), 28 (2008).   DOI
6 R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater., 21(25-26), 2632 (2009).   DOI
7 H.-S. Lee, "The Latest Trends and Issues of Anion-based Memristor", J. Microelectron. Packag. Soc., 26(1), 1 (2019).   DOI
8 H.-Y. Kim, S.-J. Park, and G. E. Jang, "Microstructure and Electrical Properties of $SrBi_2Ta_2O_9$ Ferroelectric Thin Films Prepared by RF Magnetron Sputtering Method", J. Microelectron. Packag. Soc., 6(2), 51 (1999).
9 A. Sawa, "Resistive switching in transition metal oxides", Mater. Today, 11(6), 28 (2008).   DOI
10 B. J. Choi, D. S. Jeong, and S. K. Kim, "Resistive switching mechanism of $TiO_2$ thin films grown by atomic-layer deposition", J. Appl. Phys., 98(3), 033715 (2005).   DOI
11 H. S. Lee, S. G. Choi, H.-H. Park, and M. J. Rozenberg, "A new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in $Pr_{0.7}Ca_{0.3}MnO_3$", Sci. Rep., 3, 1704 (2013).   DOI
12 J.-S. Hwang, W.-S. Kim, H.-H. Park, and T.-S. Kim "Sol-gel Mechanism of Self-patternable PZT Film Starting from Alkoxides Precursors", J. Korean Ceram. Soc., 40(4), 285 (2003).
13 H.-H. Park, S. Yoon, H.-H. Park, and R. H. Hill, "Electrical properties of PZT thin films by photochemical deposition", Thin Solid Films, 447-448, 669 (2004).   DOI
14 C.-S. Hong, H.-H. Park, S.-J. Wang, J. H. Moon, H.-H. Park, and R. H. Hill, "Formation of photoresist-free patterned ZnO film containing nano-sized Ag by photochemical solution deposition", Appl. Surf. Sci., 252(21), 7739 (2006).   DOI
15 W. J. Potts, and R. A. Nyquist, "Factors affecting the out-ofplane hydrogen deformation frequencies in olefins and their derivatives", Spectrochim. Acta A, 15, 679 (1959).   DOI
16 H.-H. Park, H.-H. Park, and R. H. Hill, "Direct-patterning of $SnO_2$ thin film by photochemical metal-organic deposition", Sens. Actuators, A, Phys., 132(2), 429 (2006).   DOI
17 Z.-X. Lu, X. Song, L.-N. Zhao, Z.-W. Li, Y.-B. Lin, M. Zeng, Z. Zhang, X.-B. Lu, S.-J. Wu, X.-S. Gao, Z.-B. Yan, and J.-M. Liu, "Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial $BiFeO_3$ thin films", Chin. Phys. B, 24(10), 107705 (2015).   DOI
18 M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, "A fast, high-endurance and scalable nonvolatile memory device made from asymmetric $Ta_2O_{5-x}/TaO_{2-x}$ bilayer structures", Nat. Mater., 10(8), 625 (2011).   DOI
19 B. J. Choi, D. S. Jeong, and S. K. Kim, "Resistive switching mechanism of $TiO_2$ thin films grown by atomic-layer deposition", J. Appl. Phys., 98(3), 033715 (2005).   DOI
20 D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, "Atomic structure of conducting nanofilaments in $TiO_2$ resistive switching memory", Nat. Nanotechnol., 5(2), 148 (2010).   DOI