• Title/Summary/Keyword: Ti $O_2$

Search Result 7,828, Processing Time 0.039 seconds

Crystallization Kinetics of $PbO-TiO_2-SiO_2-B_2O_3$ Glasses by DSC (DSC에 의한 $PbO-TiO_2-SiO_2-B_2O_3$계 유리의 결정화 속도)

  • 손명모;이승호;이헌수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1331-1336
    • /
    • 1995
  • The glass-ceramics for ferro-electric were made from compositions of 70PbO.16TiO2.8SiO2.4B2O3.2AlPO4 (wt%) and 67.5PbO.20TiO2.8.5SiO2.2B2O3.2AlPO4 (wt%). The crystallization kinetics for PbTiO3 crystalline phase formation from glass was studied using non-isothermal DSC techniques. The values of activation energy, ΔE using variables of heating rate and temperature were calculated at various reaction fractions obtained from peak area over DSC. The results indicated that activation energy was lowest at 60% reaction fractions and the activation energy of glass containing 20.0 wt% TiO2 is higher than that of glass containing 16.0 wt% TiO2. The crystallization mechanism was three dimensional growth (n=4).

  • PDF

Study on Properties of Al2O3-TiO2 Composites by Wet Method I. Mechanical Properties of Al2O3-TiO2 Composites(2) (습식법에 의한 Al2O3-TiO2 복합체의 합성 및 특성연구 I. Al2O3-TiO2 복합체의 기계적 특성(2))

  • Ryu, Su-Chak
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.153-158
    • /
    • 2002
  • $Al_2O_3$ composites powders with 1∼11 wt% $TiO_2$ were prepared by wet method and sintered at 1350$^{\circ}C$, 1450$^{\circ}C$ for 2h. Mechanical properties and microstructural evolution were investigated in this study. $Al_2O_3$-3 wt% $TiO_2$ composite were high bulk density of 2.37 g/$cm^3$ and low apparent porosity of 6.3%. The composites containing of 3 wt% $TiO_2$ showed moderately high bending strength of 68.9 MPa and the young's modulus of 35.5 MPa. The composites with increasing $TiO_2$ contents exhibit reduced thermal expansion coefficient due to the formation of $Al_2TiO_5$ phase.

Effect of $({Zn}_{1/3}{Nb}_{2/3}){O}_{2}$ Addition on the phase changes and dielectric properties of ${BaTiO}_{3}-{3TiO}_{2}$ceramics ($({Zn}_{1/3}{Nb}_{2/3}){O}_{2}$의 첨가가 세라믹스의 상변화 및 유전특성에 미치는 영향)

  • 김상근;박찬식;변재동;김경용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.8
    • /
    • pp.1068-1074
    • /
    • 1995
  • Effect of (Zn$_{1}$3/Nb$_{2}$3/) $O_{2}$ addition on the phase changes and microwave dielectric properties of BaTi $O_{3}$-3Ti $O_{2}$ ceramics were investigated. Addition of (Zn$_{1}$3/Nb$_{2}$3/) $O_{2}$ to BaTi $O_{3}$-3Ti $O_{2}$ resulted in the formation of Ba $Ti_{4}$$O_{9}$, $Ba_{2}$ $Ti_{9}$ $O_{20}$, Ba(Zn$_{1}$3/Nb$_{2}$3/) $O_{3}$, and Ti $O_{2}$ phases. Ba $Ti_{4}$$O_{9}$ phase was gradually transformed to $Ba_{2}$ $Ti_{9}$ $O_{20}$. This was identified by XRD and microstructure. As the Ba $Ti_{4}$$O_{9}$ phase transformed to $Ba_{2}$ $Ti_{9}$ $O_{20}$ phase, the dielectric constant increased to 37.5. Q*f$_{o}$ value was 40000 at x=0.04, and the temperature coefficient of resonant frequency was +10ppm/.deg. C.C.. C.C.

  • PDF

Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt (LiCl-Li2O 용융염에서 타이타늄 산화물의 전해환원 특성)

  • Lee, Jeong;Kim, Sung-Wook;Lee, Sang-Kwon;Hur, Jin-Mok;Choi, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.156-160
    • /
    • 2015
  • Experiments using a metal oxide of a non-nuclear material as a fuel are very useful to develop a new electrolytic reducer for pyroprocessing. In this study, the titanium oxides (TiO and $TiO_2$) were selected and investigated as the non-nuclear fuel for the electrolytic reduction. The immersion tests of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt revealed that they have solubility of 156 and 2100 ppm, respectively. Then, the Ti metals were successfully produced after the separate electrolytic reduction of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt. However, Ti was detected on the platinum anode used for the electrolytic reduction of $TiO_2$ unlike TiO due to the dissolution of $TiO_2$ into the salt.

Degration of Phenol by Using Nano-sized TiO2 Photocatalysts (나노 사이즈 TiO2 광촉매를 이용한 페놀 분해)

  • Choi, Sang-Keun;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.273-278
    • /
    • 2001
  • In this study, we prepared nano-sized $TiO_2$ particles for various process variables by the diffusion flame reactor and we collected $TiO_2$ particles by thermophoresis. It is found that the size of $TiO_2$ particles increases, as the flame temperature or the inlet $TiCl_4$ concentration increase or the total gas flow rate decreases. We investigated the photo-degradation of phenol wish the prepared $TiO_2$ particles. We found the optimum amounts of $TiO_2$ photocatalysts for our experimental apparatus and investigated the photo-degradation efficiencies of phenol, changing the process variables such as size of $TiO_2$ photocatlysts, phase ratio of rutile/anatase, concentration of phenol, input ratio of $O_2$. Degradation efficiencies of phenol were almost 95% in 15 minutes for the standard conditions of our experiments.

  • PDF

Synthesis and Photocatalytic Activity of Ag Spot-coated TiO2-SrO Composite Powders (나노 Ag spot-coated TiO2-SrO 복합분체의 합성과 광촉매 활성 평가)

  • Han, Jae-Kil;Kim, Hyeong-Chul;Hong, Won-Seok;Choi, Sung-Chang
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.389-393
    • /
    • 2008
  • Nano-sized $TiO_2$-60 wt% SrO composite powders were synthesized by a sol-gel method using titanium isopropoxide and $Sr(OH)_2\;{\cdot}\;8H_2O$ as precursors. 3, -5, -7 wt%Ag spot-coated $TiO_2$-60 wt% SrO composite powders were synthesized by a Ag electroless deposition method using $TiO_2$-60 wt% SrO composite powders calcined at $1050^{\circ}C$, which mainly exhibited the $SrTiO_3$phase. However, a small number of rutile $TiO_2$, $Sr_2TiO_4$ and $SrO_2$ phases were also detected. In the Ag spot-coated powders synthesized by electroless deposition, nano-sized particles about 5-25 nm in diameter adhered to the $TiO_2$-60 wt% SrO composite powders. The photocatalytic activity of Ag spot-coated $TiO_2$-SrO and $TiO_2$-SrO composite powders for degradation of phenol showed that all of $TiO_2$-SrO composite powders were highly active under UV light irradiation. 7 wt%Ag spot-coated $TiO_2$-60wt.%SrO composite powders had a relatively higher photocatalytic activity than did $TiO_2$-SrO composite powders under visible light.

Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles

  • Choi, Hong-Goo;Yong, Seok-Min;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.352-357
    • /
    • 2012
  • $SnO_2$-mixed and Sn-doped $TiO_2$ nanoparticles were synthesized via a hydrothermal process. $SnO_2$-mixed $TiO_2$ nanoparticles prepared in a neutral condition consisted of anatase $TiO_2$ nanoparticles(diamond shape, ~25 nm) and cassiterite $SnO_2$ nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped $TiO_2$ nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile $TiO_2$. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, 1~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the $TiO_2$ in the rutile phase was doped with Sn. The photocatalytic activity of the $SnO_2$-mixed $TiO_2$ nanoparticles dramatically increased and then decreased when the $SnO_2$ content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the $TiO_2$ nanoparticles with the $SnO_2$. In the case of Sn-doped $TiO_2$ nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The $SnO_2$-mixed $TiO_2$ nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped $TiO_2$ nanoparticles. This was caused by the phase difference of $TiO_2$.

Electrical Properties of TiO$_2$dopen ZnO (TiO$_2$가 첨가된 ZnO의 전기적성질)

  • 최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.22-24
    • /
    • 1995
  • The electrical conductivity of TiO$_2$doped ZnO was investigated by means of complex impedance measurement and voltage-current source and meaurement unit. The e1ectrical conductivity of TiO$_2$added ZnO was increased with increasing the concentration of TiO$_2$. The calculated relative dielectric constant was decreased with increasing the concentration of TiO$_2$. The increase of electrical conductivity seems to be the effect of TiO$_2$donor doping.

  • PDF

Conversion Efficiency of Dye-sensitized Solar Cells Using Multi-layered $TiO_2$ Electrodes (다층구조의 $TiO_2$ 전극을 이용한 염료감응형 태양전지의 변환효율)

  • Byun, Hong-Bock;Yun, Tae-Kwan;Bae, Jae-Young
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.291-294
    • /
    • 2010
  • Recently, the design of the multi-layered $TiO_2$ electrodes has been attracted for high efficiency of dye-sensitized solar cells. In this study, conversion efficiency of the multi-layered $TiO_2$ electrodes was investigated by using small and large $TiO_2$ nanoparticles. Nanostructured $TiO_2$ powders were prepared by $TiCl_4$ hydrolysis. Differently sized $TiO_2$ powders of which the average diameter was 7.6 and 18 nm were obtained by controlled calcination temperature. It was confirmed that multi-layered $TiO_2$ electrodes significantly influence short-circuit current (Jsc) and also show higher conversion efficiency than dye-sensitized solar cells consisting of each particles.

Transparent Electrode Performance of TiO2/ZnS/Ag/ZnS/TiO2 Multi-Layer for PDP Filter (TiO2/ZnS/Ag/ZnS/TiO2 다층막의 PDP 필터용 전극 특성)

  • Oh, Won-Seok;Lee, Seo-Hee;Jang, Gun-Eik;Park, Seong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.681-684
    • /
    • 2010
  • The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.