Browse > Article

Conversion Efficiency of Dye-sensitized Solar Cells Using Multi-layered $TiO_2$ Electrodes  

Byun, Hong-Bock (Department of Chemistry, Keimyung university)
Yun, Tae-Kwan (Department of Chemistry, Keimyung university)
Bae, Jae-Young (Department of Chemistry, Keimyung university)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 291-294 More about this Journal
Abstract
Recently, the design of the multi-layered $TiO_2$ electrodes has been attracted for high efficiency of dye-sensitized solar cells. In this study, conversion efficiency of the multi-layered $TiO_2$ electrodes was investigated by using small and large $TiO_2$ nanoparticles. Nanostructured $TiO_2$ powders were prepared by $TiCl_4$ hydrolysis. Differently sized $TiO_2$ powders of which the average diameter was 7.6 and 18 nm were obtained by controlled calcination temperature. It was confirmed that multi-layered $TiO_2$ electrodes significantly influence short-circuit current (Jsc) and also show higher conversion efficiency than dye-sensitized solar cells consisting of each particles.
Keywords
dye-sensitized solar cell; $TiO_2$ electrode; multi-layers; particle size;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Ito, T. Kitamura, Y. Wada, and S. Yanagida, Solar Energy Mater. Solar Cells, 76, 3 (2003).   DOI   ScienceOn
2 Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, J. Phys. Chem. B, 107, 8981 (2003).   DOI   ScienceOn
3 D. S. Kim, S. J. Han, and S. Y Kwak, J. Colloid Interface Sci., 316, 85 (2007).   DOI   ScienceOn
4 H. Wang, J. He, G. Boschloo, H. Lindstrom, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B., 105, 2529 (2001).   DOI   ScienceOn
5 H.-J. Koo, J. H. Park, B. J. Yoo, K. C. Yoo, K. K. Kim, and N.-G. Park, Inorg. Chim. Acta, 361, 677 (2008).   DOI   ScienceOn
6 S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Solar Energy Mater. Solar Cells, 90, 1176 (2006).   DOI   ScienceOn
7 Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coordinat. Chem. Rev., 248, 1381 (2004).   DOI   ScienceOn
8 W. E. Vargas, J. Appl. Phys., 88, 4079 (2000).   DOI   ScienceOn
9 J. Y. Bae, T. K. Yun, S. S. Han, B. G. Min, I. Bako, and S.-H. Suh, Rev. Roum. Chim., 54, 773 (2009).
10 K. M. Lee, V. Suryanarayanan, and K. C. Ho, J. Power Sources, 188, 635 (2009).   DOI   ScienceOn
11 H. Wang, J. He, G. Boschloo, H. Lindstrom, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B., 105, 2529 (2001).   DOI   ScienceOn
12 S. Ito, S. M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, Adv. Mater., 18, 1202 (2006).   DOI   ScienceOn
13 J. Nissfolk, K. Fredin, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. B, 110, 17715 (2006).   DOI   ScienceOn
14 S. Hore, E. Palomares, H. Smit, N. J. Bakker, P. Comte, P. Liska, K. Ravindranathan Thampi, J. M. Kroon, A. Hinsch, and J. R. Durrant, J. Mater. Chem., 15, 412 (2005).   DOI   ScienceOn
15 S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, and A. J. Frank, J. Phys. Chem. B, 101, 2576 (1997).   DOI   ScienceOn
16 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI