DOI QR코드

DOI QR Code

Synthesis and Photocatalytic Activity of Ag Spot-coated TiO2-SrO Composite Powders

나노 Ag spot-coated TiO2-SrO 복합분체의 합성과 광촉매 활성 평가

  • Han, Jae-Kil (Department of Surface & Nano Technology, Songdo Techno Park) ;
  • Kim, Hyeong-Chul (Department of Computer Aided Mechanical Design, Incheon City College) ;
  • Hong, Won-Seok (Environmental System Center, Korea Institute of Machinery and Materials) ;
  • Choi, Sung-Chang (Department of Surface & Nano Technology, Songdo Techno Park)
  • 한재길 (송도테크노파크 나노표면기술실) ;
  • 김형철 (인천전문대학 컴퓨터응용 기계설계과) ;
  • 홍원석 (한국기계연구원 청정환경기계연구센터) ;
  • 최성창 (송도테크노파크 나노표면기술실)
  • Published : 2008.07.27

Abstract

Nano-sized $TiO_2$-60 wt% SrO composite powders were synthesized by a sol-gel method using titanium isopropoxide and $Sr(OH)_2\;{\cdot}\;8H_2O$ as precursors. 3, -5, -7 wt%Ag spot-coated $TiO_2$-60 wt% SrO composite powders were synthesized by a Ag electroless deposition method using $TiO_2$-60 wt% SrO composite powders calcined at $1050^{\circ}C$, which mainly exhibited the $SrTiO_3$phase. However, a small number of rutile $TiO_2$, $Sr_2TiO_4$ and $SrO_2$ phases were also detected. In the Ag spot-coated powders synthesized by electroless deposition, nano-sized particles about 5-25 nm in diameter adhered to the $TiO_2$-60 wt% SrO composite powders. The photocatalytic activity of Ag spot-coated $TiO_2$-SrO and $TiO_2$-SrO composite powders for degradation of phenol showed that all of $TiO_2$-SrO composite powders were highly active under UV light irradiation. 7 wt%Ag spot-coated $TiO_2$-60wt.%SrO composite powders had a relatively higher photocatalytic activity than did $TiO_2$-SrO composite powders under visible light.

Keywords

References

  1. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol., C1, 1 (2000)
  2. S. Raun, F. Wu, T. Zhang, W. Gao, B. Xu and M. Zhao, Mater. Chem. Phy., 69, 7 (2001) https://doi.org/10.1016/S0254-0584(00)00301-1
  3. M. Hirano, K. Ota, O. Tanike and M. Inagaki, J. Solid State Chem., 170, 39 (2003) https://doi.org/10.1016/S0022-4596(02)00013-0
  4. C. Belver, R. Bellod, A. Fuerte and M. Fernndez-Garca, Appl. Catal., B65, 301 (2006) https://doi.org/10.1016/j.apcatb.2006.02.007
  5. C. H. Chang, Y. H. Shen, Mater. Lett., 60, 129 (2006) https://doi.org/10.1016/j.matlet.2005.08.005
  6. B. T. Lee, J. K. Han and F. Saito, Mat. Lett., 60, 2101 (2006) https://doi.org/10.1016/j.matlet.2005.12.102
  7. J. K. Han, S. M. Choi and G. H. Lee, Mat. Lett., 61, 3798 (2007) https://doi.org/10.1016/j.matlet.2006.12.075
  8. D. Das, H. K. Mishra, K. M. Parida and A. K. Dalai, J. Mol. Catal. 189, 271 (2002) https://doi.org/10.1016/j.matlet.2006.12.075
  9. B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He and J. Feng, Sur. Sci. 595, 203 (2005) https://doi.org/10.1016/j.susc.2005.08.016
  10. J. Wang, S. Yin, Q. Zhang, F. Saito and T. Sato, Solid Sate Ionics 172, 191 (2004) https://doi.org/10.1016/j.ssi.2004.05.016
  11. M. Ueda, S. Otsuka-Yao-Matsuo, Sci. Tech. Adv. Mat. 5, 187 (2004) https://doi.org/10.1016/j.stam.2003.09.012
  12. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi and M. Toyoda, Int. J. Inorg. 3, 809 (2001) https://doi.org/10.1016/S1466-6049(01)00176-3
  13. J. K Han, S. M. Choi, W. S Hong and B. T. Lee, J. Kor. Inst. Met. & Mater, 45(8), 484 (2007)