• 제목/요약/키워드: Through The Thickness Stress

검색결과 492건 처리시간 0.026초

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구 (Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens)

  • 김종한;송지호
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.63-69
    • /
    • 1992
  • 본 연구에서는 특히 앞서 지적한 표면균열의 진전거동에 관한 연구와도 관련 하여 측면홈을 가진 중앙관통균열(side-grooved center cracked tension) 시험편에 대 해 피로균열 진전실험을 수행하고, 평면변형률 조건의 만족여부 및 응력강도계수 평가 방법에 관하여 검토하여 비교적 새로운 결과를 얻었으므로 여기에 보고하고자 한다.

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

실리콘 산화막에서 스트레스 전류의 두께 의존성 (Thickness Dependence of Stress Currents in Silicon Oxide)

  • 강창수;이형옥;이성배;서광일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.102-105
    • /
    • 1997
  • The thickness dependence of stress voltage oxide currents has been measured in oxides with thicknesses between 10nm and 80nm. The oxide currents were shown to be composed of stress current and transient current. The stress current was caused by trap assited tunneling through the oxide. The transient current was caused by the tunneling charging and discharging of the trap in the interfaces. The stress current was used to estimate to the limitations on oxide thicknesses. The transient current was used to the data retention in memory devices.

  • PDF

유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산 (Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness)

  • 김종호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm

  • Choi, Sung-Mo;Jung, Do-Sub;Kim, Dae-Joong;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.303-320
    • /
    • 2007
  • The objective of this study is to clarify the structural features of members consisting of connection, as a series of the previous study on the CFT column-to-beam tensile connection with combined cross diaphragm. This connection has the merits that the stress is distributed evenly on the beam flange and the diaphragm and the stress concentration is reduced, by improving the stress transfer route and restraining abrupt deformation of diaphragm. The finite element analysis was performed to find out the stress transfer through sleeve which is an important member of the connection with combined cross diaphragm. The length and thickness of sleeve were used as variables for the analysis. As the analysis results, the length and thickness of sleeve didn't influence on the capacity of the connection and played a role of a medium to transfer the stress from the diaphragm to the filled concrete. It is proposed that the appropriate length of sleeve be the same value as the diameter of sleeve and the appropriate ratio of sleeve diameter to sleeve thickness be 20. Two equations for evaluation of the load-carrying capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구 (Study on through the thickness stresses in the corner radius of a laminated composite structure)

  • 김성준;황인희
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.665-672
    • /
    • 2013
  • 적층된 복합재 구조물의 강도와 강성 저하를 발생시키는 중요원인 중의 하나는 복합재 층 사이에 발생하는 층간 분리이다. 적용되는 대부분의 복합재 구조물은 어느 정도 곡률을 가지고 있다. 만약 굽은 복합재 구조물이 굽힘 하중을 받게 되면 평평하게 되려는 현상 때문에 두께 방향의 수직응력이 발생하게 되며, 최대 응력이 발생되는 곳에서 층간 분리가 발생한다. 본 논문에서는 굽은 복합적층 보의 반경방향 응력을 결정하는 방법을 설명하고, 층간 분리 응력에 미치는 적층 순서의 영향을 검토하였다. 그리고 층간분리 응력의 크기와 위치를 이론적인 해와 유한요소 방법을 이용하여 해석하고 비교하였다.

3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측 (Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses)

  • 박나라;안동규
    • 대한기계학회논문집A
    • /
    • 제38권4호
    • /
    • pp.427-436
    • /
    • 2014
  • 이 연구에서는 STD61 열간금형강 상부에 생성되는 하드페이싱층에 적합한 하드페이싱 재료와 두께를 3 차원 비정상 열전달 및 열응력 해석을 통하여 예측하고자 한다. Stellite6, Stellite21과 19-9DL 초합금을 하드페이싱 재료로 적용하였다. 하드페이싱 재료와 두께가 하드페이싱된 시편 내부 온도, 열응력 및 변형률 분포 변화에 미치는 영향에 대하여 분석하였다. 이 결과로부터 큰 열전도도를 가지는 재료로 얇은 하드페이싱 층을 생성하는 것이 열전달 특성 측면에서는 효과적인 것을 알 수 있었다. 또한, Stellite21 초합금으로 2 mm 두께의 하드페이싱부를 STD61 열간 금형강 상부에 생성할 경우, 하드페이싱부와 기저부의 경계부에서 유효응력 및 주변형률 편차가 최소화됨을 알 수 있었다. 이 결과들로부터 STD61 열간금형강에 적합한 하드페이싱 재료와 두께를 예측할 수 있었다.