DOI QR코드

DOI QR Code

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub (Department of Architectural and Architecture Engineering, Yonsei University) ;
  • Chang, HakJong (Department of Architectural and Architecture Engineering, Yonsei University) ;
  • Kim, JunHee (Department of Architectural and Architecture Engineering, Yonsei University)
  • Published : 2020.12.01

Abstract

This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

Keywords

References

  1. Abambres, M., Quach, W. M. (2016). "Residual stresses in steel members: A review of available analytical expressions." Int. J. Struct. Integr., 7(1), 70-94. https://doi.org/10.1108/IJSI-12-2014-0070
  2. Bu, Y., Gardner, L. (2019). "Finite element modelling and design of welded stainless steel I-section columns." J. Constr. Steel Res., 152, 57-67. https://doi.org/10.1016/j.jcsr.2018.03.026
  3. Chan, J., Chen, J., Jin, W. L. (2010). "Experiment investigation of stress concentration factor of concrete-filled tubular T joints." J. Constr. Steel Res., 66(12), 1510-1515. https://doi.org/10.1016/j.jcsr.2010.06.004
  4. Chen, C. C., Lin, C. C., Tsai, C. L. (2004). "Evaluation of reinforced connections between steel beams and box columns." Eng. Struct., 26(13), 1889-1904. https://doi.org/10.1016/j.engstruct.2004.06.017
  5. Chen, M. cheng, Wen, Q. qing, Zhu, Q., Huang, H., Xie, L. (2017). "Simulation of corrosion process for concrete filled steel tubular columns with the cellular automata method." Eng. Fail. Anal., 82, 298-307. https://doi.org/10.1016/j.engfailanal.2017.06.006
  6. Choi, I., Kim, J. H., Kim, H.-R. (2015). "Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction." Materials (Basel)., 8, 1264-1282. https://doi.org/10.3390/ma8031264
  7. Choi, I., Kim, J. H., You, Y.-C. (2016). "Effect of cyclic loading on composite behavior of insulated concrete sandwich wall panels with GFRP shear connectors." Compos. Part B Eng., 96, 7-19. https://doi.org/10.1016/j.compositesb.2016.04.030
  8. Choi, S., Lee, S., Hong, S., Kim, J. (2008). "Structural capacities of tension side for CFT square column-to-beam connections with combined-cross diaphragm." Adv. Struct. Eng., 11(2), 209-227. https://doi.org/10.1260/136943308784466251
  9. ECCS. (1976). Manual on stability of steel structures - Part 2.2. Mechanical properties and residual stresses. European Convention for Constructional Steelwork, Brussels.
  10. ECCS. (1984). Ultimate limit states calculations of sway frames with rigid joints. European Convention for Constructional Steelwork, Brussels.
  11. Galambos, T. V, Ketter, R. L. (1959). "Columns under combined bending and thrust." J. Eng. Mech. Div., 85(2), 1-30. https://doi.org/10.1061/JMCEA3.0000084
  12. Gardner, L., Bu, Y., Theofanous, M. (2016). "Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests." Eng. Struct., 127, 536-548. https://doi.org/10.1016/j.engstruct.2016.08.057
  13. Gupta, P. K., Singh, H. (2014). "Numerical study of confinement in short concrete filled steel tube columns." Lat. Am. J. Solids Struct., 11(8), 1445-1462. https://doi.org/10.1590/S1679-78252014000800010
  14. Hajjar, J. F., Schiller, P. H., Molodan, A. (1998). "A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip." Eng. Struct., 20(8), 663-676. https://doi.org/10.1016/S0141-0296(97)00107-7
  15. Huang, C., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K., Weng, Y., Wang, S., Wu, M.-H. (2002). "Axial Load Behavior of Stiffened Concrete-Filled Steel Columns." J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  16. Kang, L., Leon, R. T., Lu, X. (2014). "A general analytical model for steel beam-to-CFT column connections in OpenSEES." J. Constr. Steel Res., 100, 82-96. https://doi.org/10.1016/j.jcsr.2014.04.022
  17. Kim, J. H., Ghaboussi, J., Elnashai, A. S. (2010). "Mechanical and informational modeling of steel beam-to-column connections." Eng. Struct., 32(2), 449-458. https://doi.org/10.1016/j.engstruct.2009.10.007
  18. Kim, J. H., Ghaboussi, J., Elnashai, A. S. (2012). "Hysteretic mechanical-informational modeling of bolted steel frame connections." Eng. Struct., 45, 1-11. https://doi.org/10.1016/j.engstruct.2012.06.014
  19. Kim, J. H., You, Y.-C. (2015). "Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types." Materials (Basel)., 8, 899-913. https://doi.org/10.3390/ma8030899
  20. Kim, Y.-J., Shin, K.-J., Kim, W.-J. (2008). "Effect of Stiffener Details on Behavior of CFT Column-to-Beam Connections." Steel Struct., 8(2), 119-133.
  21. Kuranovas, A., Kvedaras, A. K. (2007). "Behaviour of hollow concrete?filled steel tubular composite elements." J. Civ. Eng. Manag., 13(2), 131-141. https://doi.org/10.3846/13923730.2007.9636429
  22. Lee, S. H., Yang, I.-S., Choi, S.-M. (2010). "Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms." Steel Compos. Struct., 10(3), 261-279. https://doi.org/10.12989/scs.2010.10.3.261
  23. Long, H., Gery, D., Carlier, A., Maropoulos, P. G. (2009). "Prediction of welding distortion in butt joint of thin plates." Mater. Des., 30(10), 4126-4135. https://doi.org/10.1016/j.matdes.2009.05.004
  24. Mirghaderi, S. R., Torabian, S., Keshavarzi, F. (2010). "I-beam to box-column connection by a vertical plate passing through the column." Eng. Struct., 32(8), 2034-2048. https://doi.org/10.1016/j.engstruct.2010.03.002
  25. Musa, I. A., Mashiri, F. R., Zhu, X., Tong, L. (2018). "Experimental stress concentration factor in concrete-filled steel tubular T-joints." J. Constr. Steel Res., 150, 442-451 https://doi.org/10.1016/j.jcsr.2018.09.001
  26. Qin, Y., Chen, Z., Wang, X. (2014a). "Experimental investigation of new internal-diaphragm connections to CFT columns under cyclic loading." J. Constr. Steel Res., 98, 35-44. https://doi.org/10.1016/j.jcsr.2014.02.014
  27. Qin, Y., Chen, Z., Wang, X., Zhou, T. (2014b). "Seismic behavior of through-diaphragm connections between CFRT columns and steel beams-experimental study." Adv. Steel Constr., 10(3), 351-371.
  28. Qin, Y., Chen, Z., Yang, Q., Shang, K. (2014c). "Experimental seismic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns." J. Constr. Steel Res., 93, 32-43. https://doi.org/10.1016/j.jcsr.2013.10.020
  29. Sakino, K., Nakahara, H., Morino, S., Nishiyama, I. (2004). "Behavior of Centrally Loaded Concrete-Filled SteelTube Short Columns." J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  30. Samarakkody, D. I., Thambiratnam, D. P., Chan, T. H. T., Moragaspitiya, P. H. N. (2017). "Differential axial shortening and its effects in high rise buildings with composite concrete filled tube columns." Constr. Build. Mater., 143, 659-672. https://doi.org/10.1016/j.conbuildmat.2016.11.091
  31. Sewel, J. S. (1902). "Column for Buildings." Eng. News, 48(17), 36-39.
  32. Shin, K.-J., Kim, Y.-J., Oh, Y.-S., Moon, T.-S. (2004). "Behavior of welded CFT column to H-beam connections with external stiffeners." Eng. Struct., 26(13), 1877-1887. https://doi.org/10.1016/j.engstruct.2004.06.016
  33. Srinivasan, C. N., Schneider, S. P. (1999). "Axially Loaded Concrete-Filled Steel Tubes." J. Struct. Eng., 125(10), 1202-1206. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1202)
  34. KATS. (2014). "Rolled steels for welded structures (KS D 3515)." Korean Agency for Technology and Standards.
  35. Torabian, S., Mirghaderi, S. R., Keshavarzi, F. (2012). "Moment-connection between I-beam and built-up square column by a diagonal through plate." J. Constr. Steel Res., 70, 385-401. https://doi.org/10.1016/j.jcsr.2011.10.017
  36. Xiao, Y., Zhang, Z., Hu, J., Kunnath, S. K., Guo, P. (2011). "Seismic Behavior of CFT Column and Steel Pile Footings." J. Bridg. Eng., 16(5), 575-586. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000198
  37. Yang, B., Nie, S., Xiong, G., Hu, Y., Bai, J., Zhang, W., Dai, G. (2016). "Residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates." J. Constr. Steel Res., 122, 261-273. https://doi.org/10.1016/j.jcsr.2016.03.029
  38. Young, B., Ellobody, E. (2006). "Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns." J. Constr. Steel Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004
  39. Young, B. W. (1972). "Residual stresses in hot-rolled members." IABSE Int. Colloq. column strength, University of Cambridge.
  40. Young, B. W., Schulz, G. W. (1977). "Mechanical properties and residual stresses." Second Int. Colloqium Stab. Steel Struct. Liege Introd. Report, ECCS IABSE.
  41. Zeinizadeh Jeddi, M., Ramli Sulong, N. H., Arabnejad Khanouki, M. M. (2017). "Seismic performance of a new through rib stiffener beam connection to concrete-filled steel tubular columns: An experimental study." Eng. Struct., 131, 477-491. https://doi.org/10.1016/j.engstruct.2016.10.038