• 제목/요약/키워드: Three-point loading test

검색결과 116건 처리시간 0.026초

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

격자지보재(Lattice Girder)의 실내성능평가기법 개발 (Development of a laboratory testing method for evaluating the loading capability of lattice girder)

  • 김동규;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제10권4호
    • /
    • pp.371-382
    • /
    • 2008
  • 본 연구의 목적은 국내터널현장에서 강지보재로 주로 사용되어지고 격자지보재(Lattice Gilder)의 공학적인 성능을 보다 객관적으로 판단하기 위한 실내성능평가기법의 제안에 있다. 본 연구를 위하여 국내에서 격자지보재로 주로 사용되는 $LG-50{\times}20{\times}30$, $LG-70{\times}20{\times}30$, 및 $LG-95{\times}22{\times}32$를 사용하여 3-point 휨강도 실험 및 4-point 휨강도 실험을 수행하였다. 또한, 하중재하위치에 따른 격자지보재의 하중-변위거동을 분석하기 위하여 각각의 실험방법에서 두 가지 하중재하방식을 사용하여 실험을 수행하였다. 각 부재에 스트레인 게이지를 부착하여 각각의 실험방법에 따라 각 부재에 작용하는 하중분포를 분석하였다. 3-point 휨강도 실험에 적용한 두 가지 하중재하방식으로 측정된 평균 최대하중은 $10%{\sim}33%$까지 차이가 나타났으며, 4-point 휨강도 실험에 적용한 두 가지 하중재하방식에 의해 측정된 평균 최대하중은 거의 차이가 없었다. 4-point 휨강도 실험의 평균 최대하중은 3-point 휨강도 실험보다 $13.56%{\sim}31.55%$와 정도 크게 나타났다. 3-point 휨강도 실험은 주강봉에 주로 하중이 집중되는 반면 4-point 휨강도 실험은 각 부재로 비교적 골고루 하중이 작용하는 것으로 나타났다.

  • PDF

실내평가기법에서 하중재하지점에 따른 레티스거더의 성능분석 (Perfomance of Lattice Girder on Loading Point in Laboratory Test)

  • 김동규;이성호;최영남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1526-1531
    • /
    • 2008
  • The objective of this study is to evaluate the loading capacity of lattice girder according to loading position. 3-point flexible strength tests were performed on three types of lattice girder, such as LG-$50{\times}20{\times}30$, LG-$70{\times}20{\times}30$, and LG-$95{\times}22{\times}32$, mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%.

  • PDF

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.

풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구 (Test and evaluation of a large scale composite rotor blade for wind turbine)

  • 정종철;장병섭;공창덕
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제16회 학술발표회 논문초록집
    • /
    • pp.91-94
    • /
    • 2001
  • A structural test of the wind turbine rotor blade must be required to evaluate the uncertainty in design assessment due to use of material, design concepts, production processes and so on, and the possible impact on the structural integrity. In the full-scale static strength test, the measuring parameters are strain, displacements, loads, weight and the center of gravity. There are test equipments, measuring sensors, a test rig and fixtures to obtain measuring parameters. In order to simulate the aerodynamics load, the three-point loading method instead of the one-point loading method is applied. There is slightly some difference between the measured results and the predicted results with the reference fiber volume fraction of 60%. However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading, a linear static solution is sufficient for the design purpose as the amount of the non-linearity is relatively small. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

An Experimental Study on Fracture Energy of Plain Concrete

  • Lee, Jaeha;Lopez, Maria M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.129-139
    • /
    • 2014
  • In this study, the concrete fracture energy was obtained using the three point notched beam test method developed by Hillerborg et al. (Cem Concr Res 6(6):773-782, 1976). A total of 12 notched concrete beams were tested under two different loading conditions: constant stroke control and constant crack mouth opening displacement (CMOD) control. Despite individual fracture energies obtained from the two different loading conditions showing some variation, the average fracture energy from both loading conditions was very similar. Furthermore, the results obtained support the idea that a far tail constant "A" could change the true fracture energy by up to 11 %, if it is calculated using CMOD instead of LVDT. The far tail constant "A" is determined using a least squares fit onto a straight line according to Elices et al. (Mater Struct 25(148):212-218, 1992) and RILEM report (2007). It was also observed that the selection of the end point can produce variations of the true fracture energy. The end point indicates the point in the experiment at which to stop. An end point of 2 mm has been recommended, however, in this study other end points were also considered. The final form of the bilinear softening curve was determined based on Elices and Guinea's methods (1992, 1994) and RILEM report (2007). This paper proposes a bilinear stress-crack opening displacement curve according to test results as well as the CEB-FIP model code.

Experimental study on strengthening of R.C beam using glass fibre reinforced composite

  • Mini, K.M.;Alapatt, Rini John;David, Anjana Elizabeth;Radhakrishnan, Aswathy;Cyriac, Minu Maria;Ramakrishnan, R.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.275-286
    • /
    • 2014
  • This paper reports the influence of number of layers and length of GFRP sheets wrapped onto RCC beams for strengthening. Twelve beams of size $700mm{\times}150mm{\times}150mm$ were cast and tested. Two beams without GFRP and ten beams wrapped in different lay-up patterns with one and two layers of GFRP sheets was subjected to three point loading test and ultrasonic pulse velocity test. Initial crack load, ultimate failure load and types of failure have been observed and noted. Experimental results indicate a significant increase in initial and ultimate load carrying capacity of GFRP wrapped beams compared to unwrapped beams. The failed control specimen was retrofitted using U wrap scheme and tested under three point loading.

사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구 (A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands)

  • 김진복;박종운;진홍민;권오균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

비정형 프리캐스트 초고강도 콘크리트 보의 설계 및 실험 평가 (Design and Experimental Evaluations of Non-Uniform Precast Ultra High-Strength Concrete Beams)

  • 김호연;조창근;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.99-108
    • /
    • 2018
  • This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.

동적하중을 받는 콘크리트보의 파괴거동 (Fracture Behavior of Concrete Beam Subjected to Dynamic Loading)

  • 강성후;김우;박선준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.257-262
    • /
    • 1995
  • In this study, after concrete cylinders were made on the condition of varying water-to -cement ratio, and cured 80 days compressive strength and splitting tensile strength were performed and moduls of elasticy is obtained. The fracture energy was obtained by acting three point bending on the 80cm in length. This test involved static loading test and dynamic loading test. In this work, the new interrelation of the material constants was obtained clearly and the property of the mixture was inspected, including the relation between the fracture energy and all kind of the material constants.

  • PDF