• 제목/요약/키워드: Three-phase boost rectifier

검색결과 28건 처리시간 0.025초

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

넓은 직류 출력전압 제어영역을 갖는 Z-소스 Four-Switch 3상 PWM 정류기 (Z-Source Four-Switch Three-Phase PWM Rectifier with Wide DC Output Voltage Control Region)

  • 쭈샤;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.275-276
    • /
    • 2013
  • In this paper, we proposed the Z-source four-switch three-phase rectifier. As we know, the conventional Four-Switch Three-Phase Rectifier(FSTPR) has advantages of the lower cost and less complex switching control. However, The conventional FSTPR can only either perform buck or boost operation, it can only attain the buck-boost operation by adding another DC-DC converter. In addition, besides its narrow output voltage region, distortion of the input current is serious either. Thus, we proposed the Z-source FSTPR which has buck-boost function and better input current waveform by applying the Z-impedance network to the conventional FSTPR. The validity of the proposed system was confirmed by experiments.

  • PDF

3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어 (Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier)

  • 한근우;정영국;임영철
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선 (Improvement of Switching Converter's Input Wave Using VIENNA Rectifier)

  • 정헌선;최재호;정교범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF

Three-phase Three-level Boost-type Front-end PFC Rectifier for Improving Power Quality at Input AC Mains of Telecom Loads

  • Saravana, Prakash P.;Kalpana, R.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1819-1829
    • /
    • 2018
  • A three-phase, three-switch, and three-level boost-type PWM rectifier (Vienna rectifier) is proposed as an active front-end power factor correction (PFC) rectifier for telecom loads. The proposed active front-end PFC rectifier system is modeled by the switching cycle average model. The relation between duty ratios and DC link capacitor voltages is derived in terms of the system input currents. Furthermore, the feasible switching states are identified and applied to the proposed system to reduce the switching stress and DC ripples. A detailed equivalent circuit analysis of the proposed front-end PFC rectifier is conducted, and its performance is verified through simulations in MATLAB. Simulation results are verified using an experimental setup of an active front-end PFC rectifier that was developed in the laboratory. Simulation and experimental results demonstrate the improved power quality parameters that are in accordance with the IEEE and IEC standards.

고조파 주입법에 의한 3상 부스트 정류기의 고조파 저감 (Harmonic Reduction of a Single-Switch Three-Phase Boost Rectifier using Harmonic-Injection Method)

  • 이준구;박석하;김진성;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.134-136
    • /
    • 1998
  • In this paper, we present harmonic reduction of a Single-Switch Three-Phase Boost Rectifier which is operated at 25kHz. A simulation result shows that input current harmonics of Single-Switch Three-Phase Rectifier are reduced by Harmonic-Injection Method. Sixth harmonic is used for Harmonic-Injection Method.

  • PDF

Direct Power Control of Three-Phase Boost Rectifiers by using a Sliding-Mode Scheme

  • Kim, Ju-Hye;Jou, Sung-Tak;Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1000-1007
    • /
    • 2013
  • This paper proposes a sliding-mode-based direct power control (DPC) method in a three-phase boost rectifier without the use of a voltage sensor. This sliding-mode-based DPC is used to improve transient-state response characteristics. This DPC can eliminate voltage sensors by calculating a voltage using a sensorless method, thus considerably reducing cost. This DPC first presents an effective algorithm that does not significantly affect the previous performance and does not need a voltage sensor. Thereafter, the effectiveness of the algorithm is verified by simulations and experiments.

입력전류의 검출이 없는 승압형 정류기의 고역률제어 (High-powerfactor Control of Boost-type Rectifier without input Current Sensing)

  • 배창한;이교범;송중호;이광운
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권9호
    • /
    • pp.510-516
    • /
    • 1999
  • In this paper, a new high-powerfactor control method for boost-type rectifier is proposed, which removes the necessity of input current sensing. This method generates a sinewave duty template only from the line voltage waveform and rectifier output, and reduces reactive power remarkably utilizing three compensation coefficients which are determined through experiments. These compensations make the input current to be in phase with the input voltage all over the load range. A prototype boost-type rectifier is designed and experimental results are presented.

  • PDF

Four switch three-phase Z-source rectifier with improved switching characteristics

  • ANVAR, IBADULLAEV;Yoo, Dae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.301-302
    • /
    • 2014
  • This paper describes four switch three-phase Z-source rectifier with improved switching characteristics. This configuration has some advantages switching loss and optimal drive circuit. The rectifier has buck-boost function by shoot-through state. Also, the rectifier has the advantage of decreasing inrush current in start-up and transient states. In order to reduce harmonics PWM modulation technique with a variable index has been suggested. Four switch three-phase Z-source rectifier with improved switching characteristics can output stable DC voltage at the same time decreasing the system's harmonic current. And also the paper presents an application of DCC method in Z-source rectifier. Principles and dynamics of the system are discussed in detail. After having viewed the results we can confirm that the proposed method is eligible and efficient.

  • PDF