• 제목/요약/키워드: Three-level rectifier

검색결과 51건 처리시간 0.024초

1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes)

  • 전용진;김용;배진용;김필수;이은영;장부환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.164-168
    • /
    • 2004
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

  • PDF

SVPWM Strategies for Three-level T-type Neutral-point-clamped Indirect Matrix Converter

  • Tuyen, Nguyen Dinh;Phuong, Le Minh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.944-955
    • /
    • 2019
  • In this paper, the three-level T-type neutral-point-clamped indirect matrix converter topology and the relative space vector modulation methods are introduced to improve the voltage transfer ratio and output voltage performance. The presented converter topology is based on combinations of cascaded-rectifier and three-level T-type neutral-point-clamp inverter. It can overcome the limitation of voltage transfer ratio of the conventional matrix converter and the high voltage rating of power switches of conventional matrix converter. Two SVPWM strategies for proposed converter are described in this paper to achieve the advantages features such as: sinusoidal input/output currents and three-level output voltage waveforms. Results from Psim 9.0 software simulation are provided to confirm the theoretical analysis. Hence, a laboratory prototype was implemented, and the experimental results are shown to validate the simulation results and to verify the effectiveness of the proposed topology and modulation strategies.

2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit)

  • 배진용;김용;권순도;김필수;이은영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF

Performance inspection of smart superconducting fault current controller in radial distribution substation through PSCAD/EMTDC simulation

  • MassoudiFarid, Mehrdad;Shim, Jae Woong;Lee, Jiho;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.21-25
    • /
    • 2013
  • In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법 (A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters)

  • 인효철;김석민;박성수;이교범
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.

바이폴 HVDC 시스템의 EMTP 시뮬레이션 (EMTP Simulation of Bipolar HVDC System)

  • 곽주식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1053-1055
    • /
    • 1998
  • Using EMTP model which describes bipolar HVDC system, switching level simulation results are presented in this paper. Voltage synchronization at point of common coupling, gate pulse generation and current control loops are represented in TACS module. The system consists of 100 km submarine cable rated 300 MW and 12 pulse rectifier and inverter stations which are connected to equivalent three-phase sources and loads through the 154 kV AC lines, respectively. In convertor stations, harmonic filters and capacitor banks are equipped to cancel out the harmonics generated by converters and to supply the required reactive power.

  • PDF

DC-Link Capacitor Voltage Balanced Modulation Strategy Based on Three-Level Neutral-Point-Clamped Cascaded Rectifiers

  • Han, Pengcheng;He, Xiaoqiong;Zhao, Zhiqin;Yu, Haolun;Wang, Yi;Peng, Xu;Shu, Zeliang
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.99-107
    • /
    • 2019
  • This study proposes a new modulation strategy to deal with unbalanced output voltage that is based on three-level neutral-point-clamped cascaded rectifiers. The fundament idea is to reallocate the value of the voltage levels generated by each of the modules on the basis of space vector pulse width modulation. This proposed modulation strategy can reduce the switching frequency while maintaining the mutual-module voltage balance. First, an analysis of unbalanced output voltage is reflected. Then a new modulation strategy is introduced in detail. Internal module capacitor voltages are balanced by the selection of redundant vectors. Moreover, the voltage balance ability is calculated. Finally, the feasibility of this modulation strategy is verified through experimental results.

단일 반송파를 이용한 Vienna Converter의 전압 제어 (A single-carrier comparison PWM method for Voltage Control of Vienna Rectifier)

  • 윤병철;신희근;김학원;조관열;임병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.149-150
    • /
    • 2011
  • 본 논문에서는 3-Level Vienna Converter를 간단히 제어 하기 위한 단일 반송파 비교 방식의 전압제어 방법을 제안 한다. 제안된 전압 제어 방식은 Two-Level 전압 변조 방식의 상전압 지령과 단자 전압 지령은 그대로 사용하고, 삼각파 비교부만 비엔나 정류기에 적합하게 단일 반송파를 이용한 방식으로 바꿔 SVPWM을 간단하게 구현할 수 있으며, 기존의 Two-Level 컨버터에서 적용하던 다양한 선형 변조 및 과변조 방식 등 전압제어 알고리듬과 전류제어 알고리듬 등을 Three - Level 컨버터에 쉽게 적용 할 수 있다.

  • PDF

EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발 (Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV)

  • 김민재;김연우;요스 프라보우;최세완
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.