• Title/Summary/Keyword: Three-electrode

Search Result 737, Processing Time 0.026 seconds

Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate (나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정)

  • Min, Dongjun;Kim, Cheolyong;Ahn, Jun-Young;Cho, Soobin;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Void Fraction Measurements Using the Impedance Method (임피던스 방법을 이용한 기공율 측정에 대한 연구)

  • Kim, M.H.;Yang, H.C.;Song, C.H.;Jung, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.721-727
    • /
    • 2000
  • Impedance method was carried out to design the electrode that can measure the void fraction of the bubbly flow in pool reservoir. To find out the optimum electrode shape, Styrofoam-tests were performed in a specially designed acrylic reservoir. Three kinds of electrodes were designed to compare the characteristics of water-air flow. The resistance was increased as the void fraction increased and the capacitance was decreased as the void fraction increased. The resistance is a main parameter to express the nature of the water-air flow in impedance method. Almost all the values of impedance were involved in resistance. The degree of deviation from the mean-resistance values showed reasonable results. Electrode type-I expressed excellent results among the three electrode shapes. The impedance values in void fraction 0-10% were similar to those of Maxwell's equation. But the impedance values in void fraction 10-20% were not similar to those of Maxwell' equation because of the edge effect near electrode.

  • PDF

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode (3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min;Choi, Chang-Ho;Kim, Mi-A;Hyun, Moon-Sik;Shin, Sung-Hye;Yi, Dong-Heui;Kim, Hyung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

Inactivation of Legionella pneumophila by Electrochemical Disinfection (전기화학적 소독에 의한 Legionella pneumophila 불활성화)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.613-619
    • /
    • 2007
  • This study has carried out a performance of dimensionally stable anode for the purpose of disinfection of Legionella pneumophila in water. Three kinds of electrode were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru and Ir on Ti metal surface, respectively. The order of disinfection performance for Legionella pneumophila was Ru/Ti > Ir/Ti > Pt/Ti. Free Cl and $ClO_2$ generation of Ir/Ti electrode was higher than that of two electrodes. However, the concentrations of generated $H_2O_2$ and $O_3$ of the Ru/Ti electrode were highest among the three electrodes. The higher NaCl concentration was, the more oxidants was generated and disinfection effect was increased. However, optimum NaCl dosage was 0.0125% due to the regulation on the conductivity and $Cl^-$ concentration for the cooling water quality of air conditioning and refrigeration equipment. With the increase of current, oxidants was more generated and following disinfection effect was increased. The increase of electrode distance reduced oxidants generation due to the low electric power, and their disinfection effect was decreased accordingly.

Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals (혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

Fabrication of Three-Dimensionally Arrayed Polyaniline Nanostructures

  • Gwon, Hye-Min;Ryu, Il-Hwan;Han, Ji-Yeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.220-220
    • /
    • 2012
  • The supercapacitors with extraordinarily high capability for energy storage are attracting growing attention for their potential applications in portable electronic equipments, hybrid vehicles, cellular devices, and so on. The nanostructuring of the electrode surface can provide large surface area and consequently easy diffusion of ions in the capacitors. In addition, compared to two-dimensional nanostructures, the three-dimensional (3D) nano-architecture is expected to lead to significant enhancement of mechanical and electrical properties such as capacitance per unit area of the electrode. Polyaniline (PANi) is known as promising electrode material for supercapacitors due to its desirable properties such as high electro activity, high doping level and environmental stability. In this context, we fabricated well-ordered 3D PANi nanostructures on 3D polystyrene (PS) nanospheres which was arrayed by layer-by-layer stacking method. The height of the PANi nanostructures could be controlled by the number of PS layers stacked. 3D PANi hollow nanospheres were also fabricated by dissolving inner PS nanospheres, which resulted in further enhancement of the surface area and capacitance of the electrode.

  • PDF

Electrochemical properties of Langmuir-blodgett Films of Fatty acid containing Azobezene (아조벤젠기를 가진 지방산 Langmuir-blodgett막의 전기화학적 특성)

  • 박근호;김범준;손태철;이경구;주찬홍;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.459-462
    • /
    • 2001
  • We have investgated the photoisomerization using light irradiation 8A5H LB film accumulated by monolayer and three layers on an ITO. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in 0.1mol/L NaClO$_4$ solution. The scan rate was 100mv/s.

  • PDF