• Title/Summary/Keyword: Three-dimensional theory

Search Result 650, Processing Time 0.025 seconds

Mechanism of Consolidation Displacement on Internal Behavior of Clay Ground Improved by Sand Drain (샌드 드레인으로 개량된 점토지반의 내부거동에 대한 압밀변형 메커니즘)

  • Baek, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.69-77
    • /
    • 2006
  • In this study, the large scaled model test improved by sand drain was carried out to clarify the internal behavior of the three-dimensional consolidation under different secondary consolidation periods. From the results of model test, the void ratio in the undrained side was lager than in the drained side. In addition, the unconfined compressive strength in the long-term consolidated specimen was larger than that in the short-term consolidated one. It was also found that the unconfined compressive strength was larger in the drained side than in the undrained side. These reasons are considered to be due to the large effective stress by quick pore water pressure dissipation by the short drainage distance in the drained side. Furthermore, in order to investigate the three-dimensional consolidation behavior of clay ground improved by the vertical drain method, the numerical analysis obtained from the three-dimensional elasto-viscous consolidation theory proposed by author (2006) were compared with the test results. It was found that during the three-dimensional consolidation process not only vertical displacement but also radial displacement occurs inside the specimen.

Three-Dimensional Thermohydrodynamic Analysis of Journal Bearings Operating in Turbulent Region Using $kappa-varepsilon$ Model (난류상태로 운전되는 저어널베어링에서의 $kappa-varepsilon$ 모델을 이용한 3-차원 THD해석)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1987
  • Frictional loss in turbulent regime is abnormally increased compared with in laminar regime. Thus the consideration of temperature rise across fluid film is significant in analysis and conventional isothermal theory loses its usefulness for performance prediction. This paper proposes to the three-dimensional thermohydrodynamic analysis of finite journal bearings operating under turbulent condition using two-equation model($\kappa-\varepsilon$ model) proposed by Hassid & Poreh. The equations are solved numerically by finite difference method. We make the analysis applicable even at large eccentricity when back flow of the lubricants occurs and axial flow is no longer ignored compared to circumferential flow.

Hydroelastic Response Characteristics of a Very Large Offshore Structures of Somisubmersible Type in waves (반잠수식 초대형 해양구조물의 파랑중 탄성응답특성)

  • Goo, Ja-Sam;Kim, Kyung-Tae;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.19-27
    • /
    • 1999
  • To design a very large floating structure, such as a floating airport, we have to estimate the hydroelastic responses of a very large floating structure (VLFS) exactly. We developed the numerical method for estimating the hydroelastic responses of the VLFS. The developed numerical approach is based on a combination of the three-dimensional source distribution method, the wave interaction theory and the finite element method for structurally treating the space frame elements. The Numerical results of the hydroelastic responses and steady drift forces of a somisubmersible type offshore structure, which is supported by the 33(3 by 11) floating bodies, with various bending rigidities are illustrated.

  • PDF

A Study on the THD Performance of a Large Tilting Pad Journal Bearing Including the Inlet Pressure Effect (선단압력을 고려한 대형 틸팅패드 저어널 베어링의 THD 성능에 관한 연구)

  • 하현천;김경웅;김영춘;김호종
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.30-38
    • /
    • 1994
  • The thermohydrodynamic(THD) performance of a large tilting pad journal bearing is investigated both theoretically and experimentally. The theory takes into account the three dimensional variation of lubricant viscosity and eddy viscosity, and the inlet pressure. Owing to the inlet pressure effect, the film pressure and load capacity are increased but the mixing temperature and bearing surface temperature are decreased. The continuous distribution of the film pressure and film thickness and the bearing surface temperature are measured along with the shaft speed and the bearing load, and they are compared with the theoretical results. The results obtained by the experiment are in good agreement with those by the theory including the inlet pressure effect. It is suggested that the three dimensional turbulent THD analysis including the inlet pressure effect is very useful to predict the performance of the large tilting pad journal bearing more accurately.

Hydrodynamic Interaction Characteristics between Multiple Floating Bodies of Semisubmersible Type in Waves (반잠수식 부체군의 상호간섭특성)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.93-103
    • /
    • 1992
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined for presenting the basic data for the design of huge offshore structures supported by a large number of the floating bodies in waves. The numerical approach is based on combination of a three-dimensional source distribution method and interaction theory which is exact within the context of linear potential theory. The method is applicable to an arbitrary number of three-dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted, imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with numerical results obtained in the literature.

  • PDF

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.275-290
    • /
    • 2018
  • The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

Three Dimensional Shape Morphing of Triangular Net (삼각망의 3 차원 형상 모핑)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.160-170
    • /
    • 2008
  • Shape morphing is the process of transforming a source shape, through intermediate shapes, into a target shape. Two main problems to be considered in three dimensional shape morphing are vertex correspondence and path interpolation. In this paper, an approach which uses the linear interpolation of the Laplacian coordinates of the source and target meshes is introduced for the determination of more plausible path when two topologically identical shapes are morphed. When two shapes to be morphed are different in shape and topology, a new method which combines shape deformation theory based on Laplacian coordinate and mean value coordinate with distance field theory is proposed for the efficient treatment of vertex correspondence and path interpolation problems. The validity and effectiveness of the suggested method was demonstrated by using it to morph large and complex polygon models including male and female whole body models.

Strong Orientation Anchoring and Shear Flow of a Nematic Liquid Crystal

  • Won Hee HAN
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2024
  • A nonlinear numerical analysis of orientation and velocity fields of the full Ericksen-Leslie theory for a nematic liquid crystal under shear flow is given. We obtained for the first time the three-dimensional orientation and two component velocity profiles evolutions for both in- and out-of-shear plane orientation anchorings. Complex evolution routes to steady state were found even for shear aligning nematic. As the Ericksen number increases monotonic evolution of velocity and orientation shifts towards multi-region nucleating director rotation growth with complex secondary flow generations. We found that contrary to the in-shear-plane anchorings like homeotropic or parallel anchorings, binormal anchoring gives rise to substantial non-planar three-dimensional orientation with nonzero secondary flow.

Study on the thickness precision of rolled sheets (압연판의 두께 정밀도에 관한 연구)

  • 김동원;윤상건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.837-845
    • /
    • 1987
  • In the research of the rolling of strip, producing the strip with a close tolerance of thickness over the rolling direction was a principal object. But it was solved by the contribution of two-dimensional theory of rolling and the development of automatic gauge control system. And new requirements for the study of flatness, crown of rolled strip and edge drop grow up recently. These phenomena are closely related with the thickness distribution along the lateral direction of rolled strip. To analyse the thickness distribution of rolled strip along the lateral direction, elastic deformation of rolls and plastic deformation of work material must be discussed simultaneously. In this report, an approximate three-dimensional analysis based on Tozawa's three dimensional approach was applied to 12 cases of different rolling conditions and the numerical results were investigated. Especially stresses were laid upon the investigation of optimal boundary position between the three-dimensional analysis region and the plane strain analysis region.

Frequencies and Mode Shapes of Annular Plates tilth Variable Thickness by the Ritz Method in Three-Dimensional Analysis (변두께를 갖는 두꺼운 환형판의 삼차원적 리츠방법에 의한 진동수와 모드형상)

  • 양근혁;강재훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.89-100
    • /
    • 2001
  • The Ritz method Is applied In a three-dimensional (3-D) analysis to obtain accurate frequencies for thick. linearly tapered. annular plates. The method is formulated for annular plates haying any combination of free or fixed boundaries at both Inner and outer edges. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate. and a1gebraic polynomials in the radial and thickness co-ordinates. Upper bound convergence of the non-dimensional frequencies to the exact values within at least four significant figures is demonstrated. Comparisons of results for annular plates with linearly varying thickness are made with ones obtained by others using 2-D classical thin place theory. Extensive and accurate ( four significant figures ) frequencies are presented 7or completely free. thick, linearly tapered annular plates haying ratios of average place thickness to difference between outer radius (a) and inner radius (b) radios (h$_{m}$/L) of 0.1 and 0.2 for b/L=0.2 and 0.5. All 3-D modes are included in the analyses : e.g., flexural, thickness-shear. In-plane stretching, and torsional. Because frequency data liven is exact 7o a\ulcorner least four digits. It is benchmark data against which the results from other methods (e.g.. 2-D 7hick plate theory, finite element methods. finite difference methods) and may be compared. Throughout this work, Poisson\`s ratio $\upsilon$ is fixed at 0.3 for numerical calculations.s.

  • PDF