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Abstract 

A nonlinear numerical analysis of orientation and velocity fields of the full Ericksen-Leslie theory for a 

nematic liquid crystal under shear flow is given. We obtained for the first time the three-dimensional 

orientation and two component velocity profiles evolutions for both in- and out-of-shear plane orientation 

anchorings. Complex evolution routes to steady state were found even for shear aligning nematic. As the 

Ericksen number increases monotonic evolution of velocity and orientation shifts towards multi-region 

nucleating director rotation growth with complex secondary flow generations. We found that contrary to the 

in-shear-plane anchorings like homeotropic or parallel anchorings, binormal anchoring gives rise to 

substantial non-planar three-dimensional orientation with nonzero secondary flow. 

 

Keywords: Nematic Liquid Crystal, Ericksen-Leslie Theory, Orientation Anchoring, Shear Flow, Frank Orientation 

Distortion Energy. Leslie Viscosity. 

 

1. INTRODUCTION 

Liquid crystallinity is a distinct state of matter, simultaneously displaying both the long range molecular 

orientational order that gives rise to crystal-like properties (e.g., static birefringence, non-relaxing elasticity, 

etc.), and complete fluidity, of which various display technologies can take advantage [1]. Nematic liquid 

crystals have one-dimensional orientational order in which molecules tend to align towards a common unit 

vector called director [2]. The conservation laws for liquid crystal physics were given in [3]. The Frank 

orientation distortion energy equation was incorporated into viscous-orientational-elastic stress and couple 

stress expressions to build a continuum theory [4]. This theory is called Ericksen-Leslie (E-L) theory. While 

the E-L theory has been numerically solved for two-dimensional orientations during flow with only the in-

shear-plane anchoring, it was not solved for three-dimensional orientation during flow with out-of-shear plane 

orientation anchoring [5-8]. The present study was able to numerically solve the three-dimensional orientation 

and two-component velocity profiles evolutions with both in- and out-of-shear plane orientation anchorings. 

 

2. THEORY 

The L-E theory consists of the following linear momentum conservation and the viscoelastic director torque 

balance equations with corresponding constitutive equations. 
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𝜌
𝑑𝑣𝑖

𝑑𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑔𝑖 +

𝜕

𝜕𝑥𝑗
𝜎𝑗𝑖 ,       (1) 

𝜖𝑖𝑝𝑞𝑛𝑝 (𝛾1𝑁𝑞 +  𝛾2𝑛𝑘𝐴𝑘𝑞 −
𝜕𝐹𝑑

𝜕𝑛𝑞
+

𝜕

𝜕𝑥𝑘

𝜕𝐹𝑑

𝜕(
𝜕𝑛𝑞

𝜕𝑥𝑘
)
) = 0 ,     (2) 

 

where ρ and p are density and pressure, respectively. v𝑖  𝑟epresents the i-th component of the velocity vector 

parallel to the x𝑖  axis in cartesian coordinates; the usual right handed cartesian coordinates alternatively 

represent 𝑥1 = 𝑥,  𝑥2 = 𝑦, 𝑥3 = 𝑧. (d/dt) means the material time derivative (𝑑/𝑑𝑡 = 𝜕/𝜕𝑡 + 𝑣𝑘𝜕/𝜕𝑥𝑘). 

Here, Einstein summation convection for repeated indices is used like (𝑣𝑘𝜕/𝜕𝑥𝑘 = ∑ 𝑣𝑘𝜕/𝜕𝑥𝑘
3
𝑘=1 ).  𝑔𝑖 is 

the i-th component of gravity. σ𝑗𝑖 are the i-th components of the surface force per xj-normal area having the 

unit of pressure. 𝜖𝑖𝑝𝑞 represents the alternating third order tensor. 𝑛𝑝 represents the p-th component of the 

unit vector director representing local average molecular orientation. 𝑁𝑝 represents p-th component of the 

director rotation rate vector with respect to the rotating background fluid. γ1 and γ2 are called rotational and 

irrotational viscosities, respectively. 𝐴𝑘𝑞  and 𝜔𝑘𝑞  are the rate of deformation and rotation tensors, 

respectively. 𝐹𝑑  is the Frank orientation curvature free energy per volume. And the corresponding 

constitutive equations are given below. 

 

𝐹𝑑 = 𝐾11(𝜕𝑛𝑝/𝜕𝑥𝑝)
2

 +  𝐾22(𝑛𝑝𝜀𝑝𝑟𝑠𝜕𝑛𝑠/𝜕𝑥𝑟)
2

+ 𝐾33 | 𝜀𝑖𝑗𝑘  𝑛𝑗𝜀𝑘𝑟𝑠𝜕𝑛𝑠/𝜕𝑥𝑟|
2
,  (3) 

 

𝑁𝑝 = 𝜕𝑛𝑝/𝜕𝑡 + 𝑣𝑘𝜕𝑛𝑝/𝜕𝑥𝑘 − 𝜔𝑝𝑘 𝑛𝑘 ,  2𝜔𝑝𝑘 =  
𝜕𝑣𝑝

𝜕𝑥𝑘
−

𝜕𝑣𝑘

𝜕𝑥𝑝
,  2𝐴𝑝𝑘 =  

𝜕𝑣𝑝

𝜕𝑥𝑘
+

𝜕𝑣𝑘

𝜕𝑥𝑝
 ,       (4) 

 

𝜎𝑗𝑖 =
−𝜕𝐹𝑑

𝜕(
𝜕𝑛𝑞

𝜕𝑥𝑗
)

𝜕𝑛𝑞

𝜕𝑥𝑖
 + 𝑎1𝑛𝑝𝑛𝑞 𝐴𝑝𝑞 𝑛𝑗𝑛𝑖 + 𝑎2𝑛𝑗𝑁𝑖 + 𝑎3𝑛𝑖𝑁𝑗 + 𝑎4𝐴𝑗𝑖 + 𝑎5𝑛𝑗𝑛𝑝𝐴𝑝𝑖 + 𝑎6𝑛𝑖𝑛𝑝𝐴𝑝𝑗     (5) 

 

In addition to equation (1) and (2), the following constraints of continuity equation and unit length equation 

of director are solved together to obtain velocity vector, director vector and pressure in general.  

 

𝜕𝑣𝑘/𝜕𝑥𝑘 = 0 ,                𝑛𝑝𝑛𝑝 − 1 = 0.                      (6) 

 

The present study uses adaptive torque balance equations to enhance computational stability and accuracy 

[9]. Orientation and flow coupling can be described with dimensionless numbers, which are the Ericksen 

number (E) and the Reynolds number (Re) defined as 

 

𝐸 = (𝛼3 − 𝛼2)𝐻𝑈/(𝐾11 𝐾22𝐾33 )1/3,        𝑅𝑒 = 𝜌 𝑈 𝐻/(𝛼4/2) ,               (7) 

 

where H and U mean gap thickness and upper plate speed, respectively. The Leslie viscosity α4 is divided by 

two since the shear strain rate in the Ericksen-Leslie theory is a half of the usual Newtonian viscosity-stress 

relation. Ericksen number ( E ) represents a characteristic ratio between the viscous torque and the orientation  

elastic torque. Re is ignored since the biggest Re in this study is much less than 0.001. 

 

3. COMPUTING SYSTEM 

Figure 1(a) shows the shear flow geometry in which the shearing direction is along the x-axis and upper 
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plate starts moving at a constant speed of U at time t=0 while the bottom plate is fixed. H is 350μm. Fig.1(b) 

shows three-dimensional director components n𝑥 , n𝑦, n𝑧. The length of the director is equal to one.  

 

 
Figure 1. (a) Shear flow between two parallel plates and (b) director vector definition 

 

The full governing equations are listed in [9], due to their long length they are not reproduced here. The 

five-component solution vector consists of the velocity field (𝑣𝑥(𝑦, 𝑡),0, 𝑣𝑧(𝑦, 𝑡))  and the director field 

(𝑛𝑥(𝑦, 𝑡), 𝑛𝑦(𝑦, 𝑡), 𝑛𝑧(𝑦, 𝑡))  in y coordinate and time t. The x-directional velocity is called the primary 

velocity, and whenever 𝑛𝑧 ≠ 0, non-zero secondary velocity (𝑣𝑧 ≠ 0) parallel to the z-axis appears. The 

initial director orientation n𝑖
†
 has been given a small but finite random perturbation mimicking real state as 

  

𝑛𝑖
†  = (𝑛𝑖

∗ + 𝜖𝑖 )/(( 𝑛𝑘
∗ +  𝜖𝑘)(𝑛𝑘

∗  +  𝜖𝑘))1/2,   𝑖 = 𝑥, 𝑦, 𝑧,          (8) 

 

where n𝑖
∗  represents the undisturbed initial orientation director field and ϵ𝑖  the finite size (0.5 percent) 

random perturbation. At the bounding top and bottom surfaces two types of orientation anchoring conditions 

are considered. The first one is homeotropic anchoring for which the surface director is 𝑛𝐻=(nx = 0, ny =

1, nz = 0), which is within x-y plane(in-shear plane). The second one uses surface director binormal to x- and 

y-axes, or out-of-shear plane, denoted as 𝑛𝐵=(𝑛𝑥 = 0, 𝑛𝑦 = 0, 𝑛𝑧 = 1). The Leslie anisotropic viscosities 

and Frank orientation distortion constants in the E-L theory used in this paper are shown in Table 1 [9]. 

  

Table 1. Ericksen-Leslie continuum theory constants 

Leslie Viscosities α1 α2 α3 α4 α5 α6 

Unit(Pascal*s) -0.0203 -0.406 -0.0376 0.490 0.329 -0.116 

Frank Elasticity K11(Splay mode) K22(Twist mode) K33(Bend mode) 

Unit(10−11Newton) 0.67 0.37 0.77 

 

The computational method uses Galerkin finite elements to discretize space and finite difference to 

discretize time. The gap thickness coordinate (y) is discretized into 100 linear elements and the time (t) 

discretization is carried out by a fully implicit Euler method. Newton-Raphson method was used to compute 

the resulting equation set [9]. Exact Jacobian equations and their Fortran conversions were obtained with two 

open source computer algebra systems [10, 11]. 
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4. RESULTS AND DISCUSSION 

Figure 2 shows evolutions of velocity and director profile along the dimensionless thickness coordinate 

( 𝑦∗  =  𝑦/𝐻 ) for E=6.5 and 𝑛𝐻. Fig.2(a) shows dimensionless primary velocity (𝑣𝑥
∗ = 𝑣𝑥 /𝑈) profile as 

functions of 𝑦∗ evolving from curvy to less curvy Newtonian-like profile with increasing nominal strains 

( γ = t ∙ U/H ) indicated in the legend. Fig.2(b) shows the corresponding dimensionless secondary velocity 

(𝑣𝑧
∗  = 𝑣𝑧/U) profile evolution, which shows an initial growth followed by rapid decay. Fig.2(c) shows x-

component of director  𝑛𝑥  profile evolution indicating that  𝑛𝑥  grows fastest in the center. This evolution 

direction is towards the lowest Miesowicz viscosity director orientation [2]. Fig.2(d) shows y-component of 

director 𝑛𝑦  which corresponds to escape from the highest Miesowicz viscosity director orientation. Fig.2(e) 

shows vanishing z-component of director 𝑛𝑧 profiles indicating stability of in-shear-plane orientation.  

 

 
Figure 2. Evolutions of dimensionless velocities and director profiles for E=6.5 and 𝒏𝑯 

 
Figure 3 shows steady state velocity and director orientation for different E values indicated in the legend 

for 𝑛𝐻. Fig.3(a) shows 𝑣𝑥
∗ profile which becomes more Newtonian-like with increasing E. Fig.3(b) shows 

vanishing 𝑣𝑧
∗  profile at steady state indicating that in-shear-plane solution is stable. Fig.3(c) shows x-

component of director approaching a limiting value with increasing E, which occurs throughout the whole 𝑦∗  

space except near the boundary. Fig.3(d) shows y-component of director also approaching a limiting value 

within the in-shear-plane with increasing E. Fig.3(e) shows vanishing z-component of director indicating 

stability of in-shear-plane orientation as the initial orientation perturbation decays. 

 

  
Figure 3. Steady state dimensionless velocities and director profiles for 𝒏𝑯 

 

00.51

(a)

vx*

g=0.007

g=0.048

g=0.327

g=5.710

-0.0400.04

(b)

vz*
-1-0.500.5

(c)

nx

-1-0.500.5

(d)

ny

-1-0.500.5

0
0

.5
1

(e)

y*

nz

00.51

(a)

vx*

E=6.5

E=65

E=650

E=6500

-0.0400.04

(b)

vz*
-1-0.500.5

(c)

nx

-1-0.500.5

(d)

ny

-1-0.500.5

0
0

.5
1

(e)

y
*

nz



Strong Orientation Anchoring and Shear Flow of a Nematic Liquid Crystal                                       107 

 

As E increases, vanishing viscous torque condition at Leslie angle θ𝑎 is met as shown below [4]. 

 

tan θ𝑎 = ((λ-1)/(λ-1))1/2,     λ= − 𝛾2/𝛾1, 𝛾1 = α3 − α2 ,   𝛾2 = α6 − α5, Cosθ𝑎 = 𝑛𝑥 = 0.956     (9) 

 

Equation (9) is valid when 𝑛𝑧 = 0. When the orientation anchoring is binormal to both the homeotropic 

orientation and shearing direction, above some critical Ericksen number, the director starts escaping from the 

x-z orientation plane, and rotates towards the shear plane which are spanned by the x- and y- axes as shown in 

Figure 4 for E=32.7. Fig.4(a) shows nearly Newtonian-like 𝑣𝑥
∗ profile throughout the whole evolution with 

increasing γ as indicated in the legend. However, fig.4(b) shows a corresponding substantial nonvanishing 

𝑣𝑧
∗ profile evolution. The initial director orientation is within the x-z plane throughout y-space. Fig.4(c) shows 

director escape towards the x-axis, which is faster than the director escape towards the y-axis as shown in 

fig.4(d). The director escaping process is also shown in decreasing z-component of director profile evolution 

shown in fig.4(e), which reaches steady state before the strain value of 101. The central region director escapes 

fastest. However, nz does not vanish, and neither does the dimensionless secondary velocity at steady state. 

 

 
Figure 4. Evolutions of dimensionless velocities and director profiles for E=32.7 and 𝒏𝑩 

 

If nz ≠ 0, there will be secondary flow along the z-axis although its magnitude is relatively smaller than the 

magnitude of the x-directional primary velocity. At E=32.7 director could not reach the Leslie angle yet due 

to the resisting Frank elastic director torque. As the Ericksen number further increases, a new phenomenon is 

observed. Figure 5 shows a complex 𝑣𝑥
∗ , 𝑣𝑧

∗  and three-dimensional director nx, ny, nz  profile evolutions 

throughout y∗ space for E=1309. Fig.5(a) shows Newtonian-like 𝑣𝑥
∗ profile which remains more or less the 

same throughout the whole evolution while (b) shows complex wave-like evolution of 𝑣𝑧
∗ profile strongly 

coupled with the three-dimensional orientation profile shown in fig.5(c-e). Instead of director escape occurring 

primarily in the center, director escape occurs in multiple regions and the escape growth direction signs are 

not all the same. Director escape from x-z plane occurs towards both plus and minus direction, but single sign 

growth eventually dominates to reach the Leslie angle where viscous torque vanishes. 
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Figure 5. Evolutions of dimensionless velocities and director profiles for E=1309 and 𝒏𝑩 

 

Figure 6 shows steady state orientation and velocity fields with binormal anchoring for a series of Ericksen 

numbers. Fig.6(a) shows almost like Newtonian 𝑣𝑥
∗ profile, but substantial amount of nonzero 𝑣𝑧

∗ can be 

seen with opposite signs at lower and upper half y∗ coordinate region in fig.6(b). Fig.6(c) shows x-component 

of director reaching the Leslie angle equivalent shown in equation (9) in the center region. Fig.6(d) shows y-

component of director also monotonically reaching the Leslie angle equivalent for 𝑛𝑦 = 𝑠𝑖𝑛𝜃𝑎  with 

increasing E when 𝑛𝑧 = 0. Fig.6(e) shows z-component of director also monotonically reaching 𝑛𝑧 = 0 line 

in the center region that does not hint any complex nature of multiple routes to the steady state. Although the 

dimensionless primary velocity and the three-dimensional director profile show monotonic variation with 

increasing E values, the dimensionless secondary velocity 𝑣𝑧
∗ profile does not decay and even changes its 

pattern with increasing E.  

 

 
Figure 6. Steady state dimensionless velocities and director profiles for 𝒏𝑩 

 

5. CONCLUSION 

The homeotropic anchoring showed orientation evolution within the shear-plane during shear flow 

monotonically reaching the vanishing viscous torque condition of equation (9) in most part of the computation 

domain. However, binormal anchoring, which represents surface director anchoring normal both to the 

shearing direction and homeotropic axis, gave a nonvanishing secondary flow and nonplanar three-

dimensional orientation even at steady state. Although the center region for higher Ericksen number eventually 

accommodates the vanishing viscous torque condition, the routes towards the vanishing viscous torque get 

00.51

(a)

vx*

g=0.09

g=4.10

g=10.7

g=19.2

g=26.9

g=37.7

-0.0400.04

(b)

vz*
-1-0.500.5

(c)

nx

-1-0.500.5

(d)

ny

-1-0.500.5

0
0

.5
1

(e)

y
*

nz

00.51

(a)

vx*

E=21.8

E=32.7

E=196

E=1309

-0.0400.04

(b)

vz*
-1-0.500.5

(c)

nx

-1-0.500.5

(d)

ny

-1-0.500.5

0
0

.5
1

(e)

y
*

nz



Strong Orientation Anchoring and Shear Flow of a Nematic Liquid Crystal                                       109 

 

more complex as the Ericksen number increases. This study revealed multi-region nucleating director escapes 

at higher Ericksen number with binormal anchoring that also proved the versatility of the adaptive torque 

balance equations. If two- or -three-dimensional gradients are considered, experimentally observed roll 

patterns and other orientation structures may emerge. We showed that increasing the Ericksen number not just 

enforces vanishing viscous torque condition but also brings more complex transient evolution patterns due to 

the viscoelastic torque balance coupled with the linear momentum balance of the full L-E theory. The 

possibility of weak anchoring with three-dimensional orientation considering both surface energy and surface 

viscous torque instead of strong anchoring will be explored in the next study.  
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