• 제목/요약/키워드: Three-dimensional surface model

검색결과 822건 처리시간 0.034초

새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석 (A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir)

  • 전지혜;정세웅
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

실험적 연구를 통한 비정형롤판재성형 예측 모델 개발 (Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study)

  • 박지우;길민규;윤준석;강범수;이경훈
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.

STUDY ON THERMAL MODELING METHODS OF A CYLINDRICAL GROUND OBJECT CONSIDERING THE SPECTRAL SOLAR RADIATION THROUGH THE ATMOSPHERE

  • Choi Jun-Hyuk;Choi Mi-Na;Gil Tae-Jun;Kim Tae-Kuk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.205-208
    • /
    • 2005
  • This research is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground considering the spectral solar radiation through the atmosphere. The thermal modelling is essential for identifying the objects on the scenes obtained from the satellites. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We developed a software that could be used to model the thermal problems of the ground objects irradiated by the spectral solar radiation. This software can be used to handle the conduction within the object as a one-dimensional mode into the depth or as a three-dimensional mode through the media. LOWTRAN7 is used to model the spectral solar radiation including the direct and diffuse solar radiances. In this paper, temperature distributions on the objects obtained by using the one-dimensional and the three-dimensional thermal models are compared with each other to examine the applicability of the relatively easy-to-apply one-dimensional model.

  • PDF

가로흐름 수역으로 방출되는 3차원 온배수 난류모형 (A Three-Dimensional Turbulence Model far the Thermal Discharge into Cross-Flow Field)

  • 이남주;최흥식;허재영
    • 한국해안해양공학회지
    • /
    • 제7권2호
    • /
    • pp.148-155
    • /
    • 1995
  • 가로흐름이 존재하는 무한수역으로 방출되는 표면 온배수에 의한 온도장 예측을 위하여 k-$\varepsilon$ 난류모델을 이용한 근해역 3차원 온배수 수치모델을 개발하였다. 개발된 모델에 의한 수치실험 결과는 다소 제한적이긴 하나, 실험결과 자료와 비교적 잘 일치하였다. 3차원 온배수 난류모델의 적용을 통해 가로흐름과 상호작용은 물론 수심적분 2차원 수치모델에서 해석이 곤란한 온배수 확장에 따른 성층화 현상, 부력에 기인된 횡방향의 중력확장 및 제트 저면에서의 포획연행 현상을 잘 나타내었다.

  • PDF

Parametric Body Model Generation for Garment Drape Simulation

  • Kim, Sungmin;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.12-18
    • /
    • 2004
  • A parametric body model generation system has been developed. Using various mathematic and geometric algorithms of this system, a three-dimensionally scanned human body can be converted into a resizable body model. Once a parametric body model is formed, its size and shape can be modified instantaneously by providing appropriate anthropometric data. To facilitate the subsequent pattern arrangement process for garment drape simulation, a bounding box generation algorithm has been developed in this study. Also the model can be converted into a set of parametric surfaces that it can also be used for three-dimensional garment pattern design system.

공간 계열 함수를 이용한 가공 표면의 특성 연구 (Engineered Surface Characterization by Space Series Function)

  • 홍민성
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.120-128
    • /
    • 1996
  • An attempt is made to characterize and synthesize engineered surfaces. The proposed method is not only an analytical tool to characterize but also to generate/synthesize three-dimensional surfaces. The developed method expresses important engineered surface characteristics such as the autocorrelation or power spectrum density functions in terms of the two-dimensional autoregressive coefficients.

  • PDF

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.

균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석 (Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face)

  • 정민중;김영진;강기주;범현규;표창률
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.

3차원 원시모델을 이용한 태풍통과시 일본 북부 연안역에서 발생한 연안용승 연구 (A Three-Dimensional Numerical Study of Coastal Upwelling in the Northern Japanese Coastal Region with the Passage of Typhoon Oliwa)

  • 홍철훈
    • 한국수산과학회지
    • /
    • 제36권6호
    • /
    • pp.723-734
    • /
    • 2003
  • A three-dimensional numerical model (POM) is implemented to examine coastal upwelling in the northern Japanese coastal region with the passage of Typhoon Oliwa in September 1997. Observed sea surface temperature (SST) decreased suddenly ranging from $-6\;to\;-7^{\circ}C$ in the coastal regions, and such a SST decrease state lasted for more than ten days after the typhoon passed. The model successfully reproduces the observation and gives a clear explanation, the sudden decrease of SST occurred in the process of coastal upwelling with Ekman dynamics. The model also describes the sea surface cooling in the open ocean with vertical velocity.