• 제목/요약/키워드: Three-dimensional distribution of voltage

검색결과 28건 처리시간 0.033초

옥외 전기시설물 침수시 누설전류에 의한 인체영향 (Human Hazard by Outdoor Electrical Facilities in Submerged Area)

  • 하태현;이현구;배정효;김대경
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.602-607
    • /
    • 2003
  • We show three-dimensional distribution of voltages resulted from the leakage current originated from outdoor electrical facilities in a submerged area. In case these facilities are grounded by the neutral line multiple grounding method, the existence of ungrounded electrical facilities can cause a disastrous effect on near-by passengers. In order to investigate this situation, we installed a real-scale test field for the experiment type I (for the leakage current path between a enclosure grounded electrical facility and another enclosure grounded one), and that for the experiment type II (for the leakage current path between a enclosure grounded electrical facility and another ungrounded one). For both cases, we carried out three-dimensional monitoring of the voltage distribution while varying additional conditions such as the exposure of the underground cables and the finishing of cable connection part. The result shows that a disastrous effect on human safety can arise from the leakage current without a pertinent measure for the construction and maintenance of outdoor electrical facilities.

3차원 전계해석 기법을 이용한 GIS 삼상 일괄형 스페이서 고찰 (Three-dimensional Analysis for Three-phase Spacers in Gas Insulated System)

  • 강종성;이방욱;강성모;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1620-1622
    • /
    • 2003
  • Recently, as the technology for the development of high voltage power apparatus using SF6 gas has made remarkable progress, it became possible to develop more compact power apparatus adopting single body substation system. In these gas insulated power apparatus, it is impossible to achieve perfect and safe insulation using only SF6 gas, because some solid insulation parts should be installed to support current-carrying conductor parts for electrical and mechanical safety. When spacers were installed in SF6 gas insulation system, they were exposed to severe electrical intensification which could reduce system insulation performance and restrict the rated operating voltage So, it is necessary to clarify the dielectric characteristics of spacers by analytically and experimentally, in order to design and develop more compact and optimum gas insulated systems. In this paper, the field distribution of three-phase spacers were investigated using three dimensional electrostatic field analysis tool adopting BEM method. And the obtained results were compared to the conventional two dimensional computations. According to these three dimensional calculations, it was possible to find out weak points in the spacer more clearly and these results could be applied to design more compact and optimum three phase spacer developments.

  • PDF

Three-dimensional Molecular Director Simulation within a Unit Pixel of TFT-LCDs including Floating Electrodes

  • Jung, Sung-Min;Park, Woo-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1151-1154
    • /
    • 2004
  • In this study, we presented a novel method to calculate unknown voltages on the floating electrodes introduced in a unit pixel of TFT-LCDs using three-dimensional molecular director simulation. For the simulation of the potential distribution profiles generated under the influence of the floating electrodes, we used the floating boundary condition on the surface enclosing the floating electrodes. The constraint for the floating boundary condition was derived from the charge neutrality condition about the floating electrodes disconnected from voltage sources. For the pixel with the floating electrodes patterned between the pixel and the data electrodes, we simulated the molecular director and the potential distribution in three-dimension, and then observed the location of the disclination lines around the edge of the pixel electrode. As a result, it was revealed that the floating electrodes significantly affect the electro-optical characteristics such as the location of the disclination line.

  • PDF

3차원 확률분포함수를 고려한 단일전자 기본 논리 셀의 해석 (Analysis of a basic single-electron logic-cell considering three-dimensional joint probability distribution)

  • 유윤섭;황성우
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.143-148
    • /
    • 1996
  • Detailed analyses have been presentd for a basic single-electron-logic-cell consisting of two single-electron-transistors (SETs) in series. The interconnection between two SETs has been treated as a coulomb island and the joint probability density function of all three coulomb islands (two from the SETs and one form the interconnection) has been exactly calculated. The average number of electrons in each coulomb island and the steady-state ouptut voltage have been calculated and analyzed.

  • PDF

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

3차원 유한요소법을 이용한 TN 모드 액정 셀 특성 분석 연구 (A Study on the Characteristic of Twisted Nematic Liquid Crystal Cell by Three Dimensional Finite Element Method)

  • 정주식;윤상호;이철수;윤석인;원태영
    • 대한전자공학회논문지SD
    • /
    • 제39권12호
    • /
    • pp.1071-1079
    • /
    • 2002
  • 본 논문에서는 액정 셀에서 전압에 따른 액정 거동을 수치 해석적으로 계산하는 방법과 그 적용 예를 보고한다. 액정 거동을 해석하기 위해 복잡한 구조에 적용이 용이한, 3차원 유한요소법을 사용하여 액정 셀 내부의 전압 분포를 계산하였다. 액정 셀 내부에 대한 자유에너지 밀도를 고려하였으며, 에릭슨-레슬리(Ericksen-Leslie) 방정식과 라플라스(Laplace) 방정식을 해석함으로서 액정 셀의 스위칭 특성을 계산하였다. 액정 방향자 분포를 이용하여 액정 셀의 광투과 특성을 Berreman's 4$\times$4 방법으로 계산하였고, 문턱 전압과 응답 속도를 확인하였다.

몬테카를로 계산 방식에 의한 RF 플라즈마 에칭 시스템에서의 이온 분포 계산 (Calculation of ion distribution in an RF plasma etching system using monte carlo methods)

  • 반용찬;이제희;윤상호;권오섭;김윤태;원태영
    • 전자공학회논문지D
    • /
    • 제35D권5호
    • /
    • pp.54-62
    • /
    • 1998
  • In a plasma etching system, ions become an important parameter in determining the wafer topography which depends on both the physical sputtering mechanism and the chemically enhanced reaction. this paper reports the energy and angular distributions of ions across the plasma sheath using a monte carlo method. The ion distribution is mainly affected by the magnitude of the sheath voltage and by the collision in the sheath. Furthemore, the local potential distribution in a plamsa sheath has been determined by solving the poisson's equation. In th is work, ionic collisions were cosidered in terms of both charge exchange and momentum transfer. The three-dimensional distributions of ions were calculated with varying the input process conditions in the plasma reactor.

  • PDF

CFD-CAD 통합해석을 이용한 전력기기 온도상승 예측 (Prediction of temperature rise of Electric Switching Device Using CFD-CAD Integrated Analysis)

  • 안희섭;이종철;최종웅;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.808-810
    • /
    • 2002
  • Higher current-rating and improved thermal performance are being sought for existing medium-voltage vacuum circuit breakers(VCB) in order to meet market needs which require to be compact and downsized. In this paper, thermal performance of medium voltage vacuum circuit breaker was investigated through experiments and numerical analysis. We changed several major parameters of current-rating and heat sink affecting on thermal behaviors in the breaker and observed the results. To predict the temperature distribution in complex three-dimensional (3-D) VCB components and gas, the commercial package was used to simulate conjugate heat transfer. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual temperature rise measurements obtained from experiments.

  • PDF

사각형 전극에서의 열유동 해석 (Simulation of heat flow for rectangular electrodes)

  • 신윤섭;박수웅;나석주
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.62-69
    • /
    • 1990
  • Being focused on the recent studies that the fatigue strength of resistance spot weldmentes can be improved by using ellipsoidal weld nuggets, the voltage and temperature distribution in resistance spot weldments were simulated for the various rectangular electrodes which had the different aspect ratio of the contact area. Because the electrode shape was not axi-symmetric, the solution domain for simulation should be three dimensional. A series of experiments were carred out to verify the analytically obtained temperature distribution in the weldment. From the calculational and experimental results, it could be revealed that the nugget took the form of ellipsoid, while both results showed a considerable discrepancy for the high aspect ratio.

  • PDF

3차원 포아송방정식을 이용한 FinFET의 포텐셜분포 모델 (Potential Distribution Model for FinFET using Three Dimensional Poisson's Equation)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.747-752
    • /
    • 2009
  • 본 연구에서는 FinFET에서 문턱전압이하 전류 및 단채널효과를 해석하기 위하여 필수적인 포텐셜분포를 구하기 위하여 3차원 포아송방정식을 이용하고자 한다. 특히 계산시간을 단축시키고 파라미터의 관련성을 이해하기 쉽도록 해석학적 모델을 제시하고자 한다. 이 모델의 정확성을 증명하기 위하여 3차원 수치해석학적 모델과 비교되었으며 소자의 크기파라미터에 따른 변화에 대하여 설명하였다. 특히 채널 도핑여부에 따라 FinFET의 채널 포텐셜을 구하여 향후 문턱전압이하 전류 해석 및 문턱 전압 계산에 이용할 수 있도록 모델을 개발하였다.