• Title/Summary/Keyword: Three-Dimensional Boundary Layer

Search Result 198, Processing Time 0.026 seconds

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants (2-D model)

  • Nam, Jae-Cheol
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.65-68
    • /
    • 2003
  • A quantitative study of the amount of air transported between the boundary layer and the free atmosphere is important for understanding air quality and upper tropospheric ozone, which is a greenhouse gas. Frontal systems are known to be an effective mechanism for the vertical transport of pollutants. Numerical experiments have been performed with a simple two-dimensional front model to simulate vertical transport of trace gases within developing cold fronts. Three different trace gases experiments have been done numerically according to the different initial fields of trace gases such as aerosol, ozone and $H_2O_2$. Trace gas field tilts to the east while the front tilts to the west. Aerosol simulation shows that pollutants can be transported out of the boundary to altitudes of about 10 km. The stratospheric ozone is brought downwards in a tropopause fold behind of the frontal surface. The meridional gradient in trace gas ($H_2O_2$) can cause a complicate structure in the trace field by the meridional advection.

  • PDF

3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept (Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석)

  • Park, Min-Cheol;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay (3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.86-100
    • /
    • 1993
  • Three-dimensional baroclinic hydrodynamic model, BACHOM-3, is developed using ADI finite difference scheme. The model is applied to a uni-nodal standing wave in a rectagular basin. The model results for the surface elevation and velocities coincide with the analytical results. To verify the field applicability of the model and to investigate the flow patterns of the Suyoung Bay in Pusan, Korea, the model is applied to the bay. The numerically predicted velocity predicted velocity fields during spring tide at normal river flow are compared with field measurements, the comparisons show good agreement. A clockwise residual circulations at the first level (depth = 0∼2m) and the second level (depth=2∼5 m) of the central part of the bay occur, and the ebb flow is stronger than the flood flow. Computed velocity fields show that the phase difference of velocities between the surface layer and bottom layer occurs and the phase lag increases with height from the bottom. Then, the model is applied successfully for the computation of flow fields considering flood river flow and wind effects. When the wind is blowing toward the land from the sea, the flow patterns at the surface layer correspond with the wind direction, but the flow patterns at the near solid boundary of the lower layer show opposite currents to the wind direction.

  • PDF

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel According to Contraction Type (수축부 형상에 따른 풍동 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.5-12
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to investigate the internal flow fields characteristics according to wind tunnel contraction type. The turbulence model used in this study is a realizable $k-{\varepsilon}$ modified from the standard $k-{\varepsilon}$ model. As a results, the distribution of the axial mean velocity components along the central axis of the flow model is very similar to the ASME and BE types, and the cubic and cosine types. When the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at BS type contraction, but the smallest at cubic type contraction. The boundary layer thickness is the smallest in the cosine type contraction as the axial distance increases. The maximum turbulent kinetic energy in the test section is the smallest in the order of the contraction of cubic type and cosine type. Comprehensively, cubic type contraction is the best choice for wind tunnel performance, and cosine type contraction can be the next best solution.

A study of the spatial amplification of the Type II instability for the Rotating-disk flow (회전원판 유동의 제2형 불안정성 공간증폭에 관한 이론적 연구)

  • Lee, Yun-Yong;Lee, Kwang-Won;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.481-486
    • /
    • 2001
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. Detailed numerical values of the growth rates, neutral curves and other characteristics have been calculated for the Type II-instabilities. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The present stability results are agree with the previously known ones within reasonable limit. The spatial amplification contours have been calculated for the moving disturbance wave, whose azimuth angle is between $\varepsilon=-10^{\circ}$ and $-20^{\circ}$. The transition flow of the moving disturbance wave will be developed at $\varepsilon=-15^{\circ}$ and Re=352 corresponding at the growth rates n = 5.8 from the spatial amplification contours.

  • PDF

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Analytical approaches to the charging process of stratified thermal storage tanks with variable inlet temperature (변온유입 성층축열조의 충전과정에 대한 해석적 접근)

  • Yoo, Hoseon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This paper presents an approximate analytical solution to a two-region one-dimensional model for the charging process of stratified thermal storage tanks with variable inlet temperature in the presence of momentum-induced mixing. Based on the superposition principle, an arbitrary-varying inlet temperature is decomposed into inherent discontinuous steps and continuous intervals approximated as a finite number of piecewise linear functions. This approximation allows the temperature of the upper perfectly-mixed layer to be expressed in terms of constant, linear and exponential functions with respect to time. Applying the Laplace transform technique to the model equation for the lower thermocline layer subject to each of three representative interfacial conditions yields compact-form solutions, a linear combination of which constitutes the final temperature profile. A systematic method for deriving solutions to the plug-flow problem having polynomial-type boundary conditions is also established. The effect of adiabatic exit boundary on solution behaviors proves to be negligible under the actual working conditions, which justifies the assumption of semi-infinite domain introduced in the solution procedure. Finally, the approximate solution is validated by comparing it with an exact solution obtained for a specific variation of inlet temperature. Excellent agreements between them suffice to show the necessity and utility of this work.

  • PDF

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel Contractions with Morel's Equation (모렐 식을 갖는 풍동수축부의 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2018
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the internal flow fields characteristics of wind tunnel contractions made by Morel's curve equations. The turbulence model used in this study is a realizable ${\kappa}-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, when the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at $Z_m=300$, 400 mm, but the smallest at $Z_m=700mm$. The maximum turbulence intensity in the test section is about 2.5% when calculated by the homogeneous flow, so it is improved by about 75% compared to the 10% turbulence intensity at the inlet of the plenum chamber due to the contraction.

Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM

  • Mohammad Sadegh Tayebi;Sattar Jedari Salami;Majid Tavakolian
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.445-459
    • /
    • 2023
  • The current investigation is the first endeavor to apply the full layerwise finite element method (FEM) in free vibration analysis of functionally graded (FG) composite plates reinforced with graphene nanoplatelets (GPLs) in thermal environment. Unlike the equivalent single-layer (ESL) theories, the layerwise FEM focuses on all three-dimensional (3D) effects. The GPLs weight fraction is presumed invariable in each layer but varies through the plate thickness in a layerwise model. The modified Halpin-Tsai model is employed to acquire the effective Young's modulus. The rule of mixtures is applied to specify the effective Poisson's ratio and mass density. First, the current method is validated by comparing the numerical results with those stated in the available works. Next, a thorough numerical study is performed to examine the influence of various factors involving the pattern of distribution, weight fraction, geometry, and size of GPLs, together with the thickness-to-span ratio, thermal environment, and boundary conditions of the plate, on its free vibration behaviors. Numerical results demonstrate that employing a small percentage of GPL as reinforcement considerably grows the natural frequencies of the pure epoxy. Also, distributing more square-shaped GPLs, involving a smaller amount of graphene layers, and vicinity to the upper and lower surfaces make it the most efficient method to enhance the free vibration behaviors of the plate.