DOI QR코드

DOI QR Code

Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM

  • Mohammad Sadegh Tayebi (Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University) ;
  • Sattar Jedari Salami (Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Majid Tavakolian (Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University)
  • 투고 : 2022.03.27
  • 심사 : 2023.01.16
  • 발행 : 2023.02.25

초록

The current investigation is the first endeavor to apply the full layerwise finite element method (FEM) in free vibration analysis of functionally graded (FG) composite plates reinforced with graphene nanoplatelets (GPLs) in thermal environment. Unlike the equivalent single-layer (ESL) theories, the layerwise FEM focuses on all three-dimensional (3D) effects. The GPLs weight fraction is presumed invariable in each layer but varies through the plate thickness in a layerwise model. The modified Halpin-Tsai model is employed to acquire the effective Young's modulus. The rule of mixtures is applied to specify the effective Poisson's ratio and mass density. First, the current method is validated by comparing the numerical results with those stated in the available works. Next, a thorough numerical study is performed to examine the influence of various factors involving the pattern of distribution, weight fraction, geometry, and size of GPLs, together with the thickness-to-span ratio, thermal environment, and boundary conditions of the plate, on its free vibration behaviors. Numerical results demonstrate that employing a small percentage of GPL as reinforcement considerably grows the natural frequencies of the pure epoxy. Also, distributing more square-shaped GPLs, involving a smaller amount of graphene layers, and vicinity to the upper and lower surfaces make it the most efficient method to enhance the free vibration behaviors of the plate.

키워드

참고문헌

  1. Akhavan, H., Hosseini-Hashemi, S., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: frequency analysis", Comput. Mater. Sci., 44(3), 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001.
  2. Ayvaz, Y. and Oguzhan, C.B. (2008), "Free vibration analysis of plates resting on elastic foundations using modified Vlasov model", Struct. Eng. Mech., 28(6), 635-658. http://doi.org/10.12989/sem.2008.28.6.635.
  3. Babaei, M., Kiarasi, F., Tehrani, M.S., Hamzei, A., Mohtarami, E. and Asemi, K. (2022), "Three dimensional free vibration analysis of functionally graded graphene reinforced composite laminated cylindrical panel", Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl., 236(8), 1501-1514. https://doi.org/10.1177/14644207211073445
  4. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032.
  5. Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
  6. De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Materialia, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007.
  7. Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324.
  8. Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277.
  9. Esmaeilzadeh, M., Golmakani, M.E., Luo, Y. and Bodaghi, M. (2021), "Transient behavior of imperfect bi-directional functionally graded sandwich plates under moving loads", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-021-01521-5.
  10. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  11. Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
  12. Halpin Affdl, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  13. Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
  14. Isavand, S., Bodaghi, M., Shakeri, M. and Mohandesi, J.A. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
  15. Jedari Salami, S. (2016), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788
  16. Ji, X.Y., Cao, Y.P. and Feng, X.Q. (2010), "Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites", Model. Simul. Mater. Sci. Eng., 18(4), 045005. http://doi.org/10.1088/0965-0393/18/4/045005.
  17. Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280.
  18. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  19. Kumar, P. and Srinivas, J. (2017), "Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer-wise formulation", Compos. Struct., 177, 158-170. https://doi.org/10.1016/j.compstruct.2017.06.055.
  20. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions" Eng. Struct., 22, 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3.
  21. Liu, F., Hu, N., Ning, H., Liu, Y., Li, Y. and Wu, L. (2015), "Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene", Comput. Mater. Sci., 108, 160-167. https://doi.org/10.1016/j.commatsci.2015.06.023.
  22. Liu, F., Ming, P. and Li, J. (2007) "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76(6), 064120. https://doi.org/10.1103/PhysRevB.76.064120.
  23. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  24. Maji, P., Rout, M. and Karmakar, A. (2020), "Free vibration response of carbon nanotube reinforced pretwisted conical shell under thermal environment", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234, 770-783. https://doi.org/10.1177/0954406219886325.
  25. Marjanovic, M., Markovic, N., Damnjanovic, E. and Cvetkovic, R. (2020), "Three-dimensional stress analysis and design of cross-laminated timber panels using full-layerwise-theory-based finite element method", Thin Wall. Struct., 157, 107156. https://doi.org/10.1016/j.tws.2020.107156.
  26. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
  27. Mirzaei, M. and Kiani, Y. (2017), "Nonlinear free vibration of FG-CNT reinforced composite plates", Struct. Eng. Mech., 64(3), 381-390. https://doi.org/10.12989/sem.2017.64.3.381.
  28. Mojiri, H.R. and Jedari Salami, S. (2020), "Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment", Mech. Bas. Des. Struct. Mach., 50(6), 1872-1892. https://doi.org/10.1080/15397734.2020.1766492.
  29. Muni Rami Reddy, R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions", Aerosp. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019.
  30. Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B Condens. Matter., 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071.
  31. Nikbakht, S., Jedari Salami, S. and Shakeri, M. (2017), "Three dimensional analysis of functionally graded plates up to yielding, using full layer-wise finite element method", Compos. Struct., 182, 99-115. https://doi.org/10.1016/j.compstruct.2017.09.022.
  32. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric filed effect in atomically thin carbon films", Sci., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  33. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. http://doi.org/10.12989/sem.2015.53.2.3.
  34. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  35. Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnol., 17(3), 864-870. http://doi.org/10.1088/0957-4484/17/3/042.
  36. Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Comm. Appl. Numer. Meth., 3(3), 173-180. https://doi.org/10.1002/cnm.1630030303.
  37. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, USA.
  38. Rout, M. and Karmakar, A. (2019), "Free vibration of rotating pretwisted CNTs-reinforced shallow shells in thermal environment", Mech. Adv. Mater. Struct., 26(21), 1-13. https://doi.org/10.1080/15376494.2018.1452317.
  39. Scarpa, F., Adhikari, S. and Phani, A.S. (2009), "Effective elastic mechanical properties of single layer graphene sheets" Nanotechnol., 20(6), 65709-65719. http://doi.org/10.1088/0957-4484/20/6/065709.
  40. Shakeri, M. and Mirzaeifar, R. (2009), "Static and dynamic analysis of thick functionally graded plates with piezoelectric layers using layerwise finite element model", Mech. Adv. Mater. Struct., 16(8), 561-575. https://doi.org/10.1080/15376490802625514.
  41. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  42. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  43. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  44. Shen, H.S., Xiang, Y. and Lin, F. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Meth. Appl. M., 319, 175-193. https://doi.org/10.1016/j.cma.2017.02.029.
  45. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  46. Spanos, K.N., Georgantzinos, S.K. and Anifantis, N.K. (2015), "Mechanical properties of graphene nanocomposites: A multiscale finite element prediction", Compos. Struct., 132, 536-544. https://doi.org/10.1016/j.compstruct.2015.05.078.
  47. Talha, M. and Singh, B. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  48. Wang, F., Drzal, L.T., Qin, Y. and Huang, Z. (2014), "Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites", J. Mater. Sci., 50(3), 1082-1093. https://doi.org/10.1007/s10853-014-8665-6.
  49. Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogeneous elastic foundations", Int. J. Mech. Sci., 45(6-7), 1229-1244. https://doi.org/10.1016/S0020-7403(03)00141-3.
  50. Yas, M.H., Aragh, B.S. and Heshmati, M. (2011), "Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method", Struct. Eng. Mech., 37(5), 529-542. http://doi.org/10.12989/sem.2011.37.5.529.
  51. Yasmin, A. and Daniel, I.M. (2004), "Mechanical and thermal properties of graphite platelet/epoxy composites", Polym., 45(24), 8211-8219. https://doi.org/10.1016/j.polymer.2004.09.054.
  52. Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 1-18. https://doi.org/10.1007/s11071-022-08186-9.
  53. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  54. Zhang, Y.W., She, G.L. and Ding, H.X. (2023), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  55. Zhang, Y.Y., Wang, C.M., Cheng, Y. and Xiang, Y. (2011), "Mechanical properties of bilayer graphene sheets coupled by sp3 bonding", Carbon, 49(13), 4511-4517. https://doi.org/10.1016/j.carbon.2011.06.058.
  56. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. http://doi.org/10.12989/scs.2022.43.6.797.