• Title/Summary/Keyword: Third-order equation

Search Result 289, Processing Time 0.032 seconds

Bi-stability in a vertically excited rectangular tank with finite liquid depth

  • Spandonidis, Christos C.;Spyrou, Kostas J.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-238
    • /
    • 2012
  • We discuss the bi - stability that is possibly exhibited by a liquid free surface in a parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A "continuation method" of nonlinear dynamics is then used in order to elicit efficiently the instability boundary in parameters' space and to predict how steady surface elevation changes as the frequency and/or the amplitude of excitation are varied. Results are compared against those of the linear version of the system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in parameters space, there must be a region, inside the quiescent region, where liquid surface instability is exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the free surface was substantially disturbed initially.

Coupled Bending and Torsional Vibrations Analysis of Cracked L-shaped Beam (크랙을 가진 L형 단면 보의 횡-비틀림 연성진동 해석)

  • Son, In-Soo;Kim, Chang-Ho;Cho, Jeong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • In this paper, the influence of a crack on the natural frequency of cracked cantilever L-shaped beam with coupled bending and torsional vibrations by analytically and experimentally is analyzed. The L-shaped beam with a crack is modeled by Hamilton's principle with consideration of bending and torsional energy. The two coupled governing differential equations are reduced to one sixth-order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first, second and third mode of fracture and to be always opened during the vibrations. The theoretical results are validated by a comparison with experimental measurements. The maximal difference between the theoretical results and experimental measurements of the natural frequency is less than 7.5% in the second vibration mode.

Structural Relationships between Instructional Leadership, Learning Motivation and Learning Outcome - Urban-Rural Migrant Learners - (성인교육에서 교수리더십, 학습동기, 학습성과 간의 구조적 관계 -귀농·귀촌 학습자를 중심으로-)

  • Park, Yu-Sun;Choi, Eun-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.24 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • The purpose of this study was to analyze the structural relationships between adult educators' instructional leadership, learners' motivation and performance among those participants in education for urban-rural migration. The survey was conducted among 22 agricultural educational institutions in South Korea, and a total number of 1,109 learners responded to a questionnaire. In order to verify the hypothesized research model, the collected data were analyzed with structural equation modeling. The major findings of this study were as follows. First, adult educators' instructional leadership had a direct effect and an indirect effect on learners' performance. Second, adult educators' instructional leadership had a direct effect on learners' motivation. Third, learners' motivation had a direct effect on learners' performance.

POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE

  • Ali, Ahmad T.;Mahmoud, S.R.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • In this paper, position vector of a spacelike slant helix with respect to standard frame are deduced in Minkowski space $E^3_1$. Some new characterizations of a spacelike slant helices are presented. Also, a vector differential equation of third order is constructed to determine position vector of an arbitrary spacelike curve. In terms of solution, we determine the parametric representation of the spacelike slant helices from the intrinsic equations. Thereafter, we apply this method to find the parametric representation of some special spacelike slant helices such as: Salkowski and anti-Salkowski curves.

AXISYMMETRIC STAGNATION FLOW NEAR A PLANE WALL COATED WITH A MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께로 자성유체가 피막된 평면 벽 주의의 축대칭 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.39-44
    • /
    • 2007
  • A similarity solution of the Navier-Stokes equation for the axisymmetric stagnation flow near a plane wall coated with a magnetic fluid of uniform thickness is constructed. The shape functions representing the flow in two (magnetic and normal) fluid layer are determined from a third order boundary value problem, which is solved by the Runge-Kutta method with two shooting parameters. Features of the flow including streamline pattern and interface velocity are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. The results for the interface and wall shear stress, boundary layer and displacement thickness are also presented.

  • PDF

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF

Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정상상태 진동응답)

  • Lee, Won-Kyoung;Yeo, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.562-567
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.