• Title/Summary/Keyword: Thiol

Search Result 426, Processing Time 0.032 seconds

Detection of Pseudomonas aeruginosa with a Label-free Immunosensor from Various Cold Storage Foods (비표지 면역센서에 의한 냉장유통 식품 중 Pseudomonas aeruhinosa의 간이검출)

  • Kim, Nam-Soo;Park, In-Seon;Kim, Dong-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.3
    • /
    • pp.101-106
    • /
    • 2003
  • The aim of this study is to develop a label-free immunosensor for microbial detection and to evaluate its applicability to Pseudomonas aeruginosa detection in various food samples. The antibodies used were a polyclonal antiserum from rabbit (polyvalent type) and a monoclonal antibody raised against the flagella of P. aeruginosa. Antibody immobilization was done by a thiolated antibody chemisorption onto one gold electrode of a piezoelectric quartz crystal with a thiol-cleavable, heterobifunctional cross-linker, sulfosuccinimidyl 6-[3-(2-pyridyldithio)propionamido]hexanoate. To the Stomacher-treated samples from various raw and processed foods under cold storage, comprising sirloin, cod and pettitoes, spiking and enrichment culture were done to prepare the model samples, followed by the measurements of the frequency shifts after sample injections. The frequency shifts obtained by the sample matrices themselves were in the range of 52~89 Hz. The injections of the spiked samples caused the frequency shifts of 108~200 Hz, whereas the enriched samples decreased the steady-state resonant frequencies by 162~222 Hz. All sample measurements including baseline stabilization, sample injection and acquisition of the steady-state response were accomplished within 30 min.

Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

  • Ha, Ho-Kyung;Nam, Gyeong-Won;Khang, Dongwoo;Park, Sung Jean;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.123-133
    • /
    • 2017
  • The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) ${\beta}-lg$ nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of ${\beta}-lg$ nanoparticles. The morphological and physicochemical properties of ${\beta}-lg$ nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of ${\beta}-lg$. The surface hydrophobicity and free thiol groups of ${\beta}-lg$ were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in ${\alpha}-helical$ content and an increase in ${\beta}-sheet$ content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to $20^{\circ}C$ for 30 min, followed secondly by a mild heat temperature treatment from 55 to $75^{\circ}C$ for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of ${\beta}-lg$ nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of ${\beta}-lg$ during nanoparticle formation, and due to its modulation of the physicochemical properties of ${\beta}-lg$ nanoparticles.

Asparagine Biosynthesis in Soybean Sprouts (콩나물의 Asparagine 생합성(生合成)에 관(關)한 연구(硏究))

  • Byun, Si-Myung;Huh, Nam-Eung;Lee, Chun-Yung
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.33-42
    • /
    • 1977
  • Asparagine biosynthesis by soybean sprouts grown under the dark conditions has been demonstrated. The amount of free asparagine synthesized in ten day-old soybean sprouts increases to 22.7% on the dry weight base. The effects of nitrogen compounds such as $NH_4Cl,\;(NH_4)_2SO_4$ and urea on asparagine synthesis during the sprouting were examined and the results showed that urea was more effective than other two compounds. Glutamine-dependent asparagine synthetase was partially purified (8.6 folds) through ammonium sulfate fractionation, followed by Sephadex G-150 gel filtration. The enzyme was very labile and required protection by thiol groups or high level of glycerol. The mixture of ATP and $Mg^{++}$ ion also stabilized the enzyme activity. The enzyme utilized glutamine more effectively than ${NH_4}^+$ as an amide donor for the formation of asparagine. The enzyme required L-aspartate (Km=3.1 mM), L-glutamine, ATP and $Mg^{++}$. It showed pH optimum of 7.5 and catalyzed the formation of ${\beta}-aspartyl$ hydroxamate in the presence of L-aspartate, ATP, $Mg^{++}$ and $NH_2OH$ in the reaction mixture.

  • PDF

Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

  • Lee, Ha-Na;Jin, Hyeon-Ok;Park, Jin-Ah;Kim, Jin-Hee;Kim, Ji-Young;Kim, BoRa;Kim, Wonki;Hong, Sung-Eun;Lee, Yun-Han;Chang, Yoon Hwan;Hong, Seok-Il;Hong, Young Jun;Park, In-Chul;Surh, Young-Joon;Lee, Jin Kyung
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.327-335
    • /
    • 2015
  • Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic ${\alpha},{\beta}$-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.

Purification and Characterization of the D-xylulokinase from Candida sp. L-16 (Candida sp. L-16이 생산하는 D-Xylulokinase의 정제 및 특성)

  • 이종수;주길재
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.429-433
    • /
    • 2002
  • The D-xylulokinase from Candida sp. L-16 was purified through a sequence of ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-100 and Sephadex G-200 gel filtration. The specific activity of the purified Dxylulokinase was increased to 23.2 fold and the yield was 11.2%. The enzyme was showed to be a single protein band by SDS-PAGE. The molecular weight of the enzyme was 150,000 dalton, this enzyme was identified to be a dimer with two subunits. The optimum conditions of the enzyme were pH 8.0 and 40$\^{C}$, respectively. The enzyme was relatively stable between pH 7.0 to pH 9.0, but it was unstable over 30$\^{C}$. The enzyme showed substrate specificity on D-xylulose, D-arabinose and D-ribose, Km value and Vmax for D-xylulose were 0.042 mM and 117 units/ml, respectively. The activation energy of the enzyme was 4.75 Kcal/mol. The one was inhibited by metabolic intermediates such as 6-phosphogluconic acid, 2-keto-gluconic acid. The enzyme was activated by EDTA and thiol compounds such as cysteine-HCI, DTT and glutathione.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

The Effects of Antioxidants, N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione or Cysteamine on the Development of in vitro Fertilized bovine Oocytes (N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione 및 Cysteamine 항산화제가 소 체외수정란의 발생에 미치는 영향)

  • Kim, Min-Su;Kim, Chan-Lan;Kim, Namtea;Jeon, Ik Soo;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • To increase the productivity of in vitro development, the antioxidants have been used for culture system of bovine oocytes and embryos. However, comparative studies on these molecules are rare and direct beneficial effects on blastocyst production cannot be discriminated for best results. The study was conducted to determine the influence of N-acetyl-L-cysteine (NAC), N-acetyl-L-cysteine amide (NACA), glutathione (GSH) and cysteamime (CYS) on maturation competence of COCs from GV to MII stage and productivity of blastocyst formation during in vitro fertilization and culture. There was no difference among maturation rates of oocytes to metaphase II with polar body with antioxidants for any of the treatment groups (p>0.05). However, the significant improvement on the rate of blastocysts ($32.3{\pm}5.0%$) was found in 0.1 mM CYS treatment than 0.3 mM NAC, 0.2 mM NACA or 0.5mM GSH (p<0.05). The addition of NAC ($18.8{\pm}3.7%$) or NACA ($21.2{\pm}3.9%$) did not improve development competence to morula and blastocysts than control ($24.4{\pm}4.1%$) and GSH ($26.5{\pm}5.0%$) (p>0.05). Our study showed that medium supplementation with CYS during IVM and IVC improved the rate of bovine embryo development but not with NAC, NACA and GSH addition.

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.