• Title/Summary/Keyword: Thin-film transistor

Search Result 955, Processing Time 0.029 seconds

Improvement of Pentacene Thin Film Transistor Performance (Pentacene Thin Film Transistor의 성능 개선)

  • 이상백;이명원;김광현;허영헌;송정근
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.253-256
    • /
    • 2002
  • In Currently, OTFTS are actively studied around the world because they are expected to create new novel applications, which can not be implemented by the conventional Si semiconductor, due to the unique characteristics of organic materials. In this paper, the hole field effect mobility has been improved to the level of a-Si TFTs with 0.3cm2/V.sec, simply applying the surface treatment process on the gate with organic molecules. In addition, the model has been suggested and the temperature dependence of hole mobility analyzed.

  • PDF

Organic Thin Film Transistor의 기술 현황

  • 최종선;박재훈
    • Electrical & Electronic Materials
    • /
    • v.17 no.7
    • /
    • pp.5-11
    • /
    • 2004
  • 유기박막 트랜지스터 (Organic Thin Film Transistor : OTFT)에 관한 연구는 1980년 이후부터 시작되었으나 근래에 들어 전 세계적으로 본격적인 연구가 진행되고 있다. 이는 OTFT가 넓은 면적 위에 소자를 제작할 경우, 낮은 공정 온도를 필요로 하는 경우, 또한 구부림이 가능해야 하는 경우, 특히 저가 공정이 필요한 경우 등에 가장 적합한 것으로 생각되고 있기 때문이다. 이러한 OTFT는 미래의 정보표시 장치의 필수적인 요소들과 집적화가 매우 용이하다는 장점을 가지고 있다. 소재의 특성상 유기 발광 다이오드에 쓰이는 발광 유기물과 같은 유기 반도체가 OTFT의 제작에 사용 가능하므로 증착 공정, 물리적 화학적 성질이 매우 유사하다.(중략)

  • PDF

An Offset-Compensated LVDS Receiver with Low-Temperature Poly-Si Thin Film Transistor

  • Min, Kyung-Youl;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The poly-Si thin film transistor (TFT) shows large variations in its characteristics due to the grain boundary of poly-crystalline silicon. This results in unacceptably large input offset of low-voltage differential signaling (LVDS) receivers. To cancel the large input offset of poly-Si TFT LVDS receivers, a full-digital offset compensation scheme has been developed and verified to be able to keep the input offset under 15 mV which is sufficiently small for LVDS signal receiving.

  • PDF

Investigation on Electrical Property of Amorphous Oxide SiZnSnO Semiconducting Thin Films (비정질 산화물 SiZnSnO 반도체 박막의 전기적 특성 분석)

  • Byun, Jae Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.272-275
    • /
    • 2019
  • We investigated the electrical characteristics of amorphous silicon-zinc-tin-oxide (a-SZTO) thin films deposited by RF-magnetron sputtering at room temperature depending on the deposition time. We fabricated a thin film transistor (TFT) with a bottom gate structure and various channel thicknesses. With increasing channel thickness, the threshold voltage shifted negatively from -0.44 V to -2.18 V, the on current ($I_{on}$) and field effect mobility (${\mu}_{FE}$) increased because of increasing carrier concentration. The a-SZTO film was fabricated and analyzed in terms of the contact resistance and channel resistance. In this study, the transmission line method (TLM) was adopted and investigated. With increasing channel thickness, the contact resistance and sheet resistance both decreased.

Characterization of ZnO for Transparent Thin Film Transistor by Injection Type Delivery System of ALD

  • Choi, Woon-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.860-863
    • /
    • 2007
  • ZnO nano film for transparent thin film transistors is prepared by injection type source delivery system of atomic layer deposition. By using this delivery system the source delivery pulse time can dramatically be reduced to 0.005s in ALD system. ZnO nanofilms obtained at $150^{\circ}C$ are characterized.

  • PDF

UV/O3 Process Time Effect on Electrical Characteristics of Sol-gel Processed CuO Thin Film Transistor (UV/O3 조사 시간에 따른 Sol-gel 공정 기반 CuO 박막 트랜지스터의 전기적 특성 변화)

  • Lee, Sojeong;Jang, Bongho;Kim, Taegyun;Lee, Won-Yong;Jang, Jaewon
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this research, sol-gel processed CuO p-type thin film transistors were fabricated with copper (II) acetate monohydrate precursors. After $500^{\circ}C$ annealing process, the deposited thin films were fully converted into CuO. We investigated $UV/O_3$ process time effect on electrical characteristics of sol-gel processed CuO thin film transistors. After 600 sec $UV/O_3$ process, the fabricated CuO thin film transistor delivered field effect mobility in saturation regime of $5{\times}10^{-3}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^2$.

Poly(1,4-bis((E)-2-(3-dodecylthiophen-2-yl)vinyl)benzene) for Solution Processable Organic Thin Film Transistor

  • Kim, Chul-Young;Park, Jong-Gwang;Lee, Min-Jung;Kwon, Soon-Ki;Kim, Jin-Hak;Shin, Sung-Chul;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1659-1663
    • /
    • 2012
  • New semiconducting polymer, poly[1,4-bis(($E$)-2-(5-bromo-3-dodecylthiophen-2-yl)vinyl)benzene], was designed, synthesized and characterized. The structure of polymer was confirmed by $^1H$-NMR, IR and elemental analysis. The polymer was soluble in specific organic solvent. The weight-average molecular weights (MW) of polymer was found to be 11,000 with polydispersity of 1.82. UV-Visible absorption spectrum showed the maximum absorption at 428 nm (in solution) and 438 nm (in film). The highest occupied molecular orbital (HOMO) energy of the polymer is -5.36 eV by measuring cyclic voltammetry (CV). A solutionprocessed polymer thin film transistor device shows a mobility of $8.59{\pm}10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, an on/off current ratio of $2.0{\times}10^4$.

Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target (Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장)

  • Yu, Meng;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

Sensitivity Improvement and Operating Characteristics Analysis of the Pressure Sensitive Field Effect Transistor(PSFET) Using Highly-Oriented ZnO Piezoelectric Thin Film

  • Lee, Jeong-Chul;Cho, Byung-Woog;Kim, Chang-Soo;Nam, Ki-Hong;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.180-187
    • /
    • 1997
  • We demonstrate the improvement of sensitivity and analysis of operating characteristics of the piezoelectric pressure sensor using ZnO piezoelectric thin film and FET(field effect transistor) for sensing applied pressure and transforming the pressure into electrical signals, respectively. The sensitivity of the PSFET(pressure sensitive field effect transistor) was improved by using highly-oriented ZnO film perpendicular to the substrate surface and the operating characteristics was investigated by monitoring output voltage with time in various static pressure levels.

  • PDF

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl;Chung, Dae-Sung;Kang, In-Nam;Lim, Eun-Hee;Jung, Young-Kwan;Park, Jong-Hwa;Park, Chan-Eon;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1945-1950
    • /
    • 2007
  • Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.