• 제목/요약/키워드: Thin walled plates

검색결과 28건 처리시간 0.022초

Study of buckling stability of cracked plates under uniaxial compression using singular FEM

  • Saberi, Sina;Memarzadeh, Parham;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.417-426
    • /
    • 2019
  • Buckling is one of the major causes of failure in thin-walled plate members and the presence of cracks with different lengths and locations in such structures may adversely affect this phenomenon. This study focuses on the buckling stability assessment of centrally and non-centrally cracked plates with small-, intermediate-, and large-size cracks, and different aspect ratios as well as support conditions, subjected to uniaxial compression. To this end, numerical models of the cracked plates were created through singular finite element method using a computational code developed in MATLAB. Eigen-buckling analyses were also performed to study the stability behavior of the plates. The numerical results and findings of this research demonstrate the effectiveness of the crack length and location on the buckling capacity of thin plates; however, the degree of efficacy of these parameters in plates with various aspect ratios and support conditions is found to be significantly different. Overall, careful consideration of the aspect ratio, support conditions, and crack parameters in buckling analysis of plates is crucial for efficient stability design and successful application of such thin-walled members.

Modified Design Formula for Predicting the Ultimate Strength of High-tensile Steel Thin Plates

  • Park, Joo Shin;Seo, Jung Kwan
    • 해양환경안전학회지
    • /
    • 제27권3호
    • /
    • pp.447-456
    • /
    • 2021
  • Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.

박판보 구조물의 최적설계 시스템 개발에 관한 연구 (A Study on Design Optimization System for Thin Walled Beam Structures)

  • 편성돈;이상범;임홍재
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.238-246
    • /
    • 2000
  • In this paper, an optimization method of thin walled beam structures is proposed, Stiffnesses of a thin walled beam are characterized by the thickness of thin plates and the shape of the typical section of the beam. Explicit formula for section properties such as area, area moment of inertia, and torsional constants are derived using the response surface method. The explicit formula can be used for the optimal design of a structural system which consists of complicated thin walled beams. A vehicle structural system is optimized to demonstrate the proposed method.

  • PDF

박판단면의 비선형 좌굴거동에 관한 해석적연구 (A Study on the Nonlinear Buckling Behavior of Thin-Walled Sections)

  • 진창선;권영봉
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.407-421
    • /
    • 1998
  • 본 논문에서는 박판구조물의 좌굴모드 및 좌굴응력값을 구하기 위해서 spline finite strip method를 이용하여 박판구조물이 흔히 좌굴을 일으키기 전에 다양한 초기부정형으로 인하여 발생할 수 있는 전좌굴변형 및 비선형 응력-변형률 관계를 포함한 비선형 비탄성 좌굴해석프로그램을 개발하였다. 이 방법은 다양한 지점조건과 임의의 하중조건을 가지는 박판구조물에 적용이 가능하며, 초기부정형과 잔류응력을 포함하고 있는 다양한 형태의 박판구조물의 비선형 좌굴거동을 보다 정확하게 예측할 수가 있었다.

  • PDF

압축하중을 받는 박판 4각튜브의 소성좌굴 연구 (Study on the Plastic Buckling of Thin Rectangular Tubes under Compression)

  • 김천욱;한병기;김종민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.357-362
    • /
    • 2000
  • In the present paper the plastic buckling of thin-walled rectangular tube is analyzed. The stress-strain relations of the plates of the tube are idealized into nonlinear material of Ramberg and Osgood. Computing elastic moduli of the nonlinear material a precise plastic buckling stress has determined. The plastic buckling stress of the wider plate of the tube is considered as the crippling strength of the tube. The present theory is in good agreement with the experiments in various thickness-width ratios and materials.

  • PDF

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 기하비선형해석 (Geometrical Nonlinear Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F.)

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.317-324
    • /
    • 1998
  • A nonlinear anile element formulation of flat shell elements with drilling d.o.f, is presented for the geometrical nonlinear analysis of thin-walled structures. The shell element to be applied in finite element analysis was developed by combining a membrane element named as CLM with drilling rotation d.o.f, and plate bending element. The combined shell element possesses six degrees of freedom per node. The element showed the excellent performance in the linear analysis of the folded plate structures, in which the normal rotational rigidity of folded plates is considered, therefore, using this element geometrical nonlinear analysis of those structures is fulfilled in this study. An incremental total Larangian approach is adopted through out in which displacements are referred to the original configuration. Comparing the results with those of other researches shows the performance of this element and a folded plate structure is analyzed as an example.

  • PDF

Buckling behavior of bundled inclined columns: Experimental study and design code verification

  • Moussa Leblouba;Samer Barakat;Raghad Awad;Saif Uddin Al-Khaled;Abdulrahman Metawa;Abdul Saboor Karzad
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.183-197
    • /
    • 2024
  • Not all structural columns maintain a vertical orientation. Several contemporary building structures have inclined columns, introducing distinct challenges, particularly in buckling behavior. This study examines the buckling behavior of inclined, thin-walled steel bundled columns, differing from typical vertical columns. Using specimens with three tubes welded to plates linearly aligned at the top and triangularly at the bottom, tests indicated that buckling capacity increases with tube wall thickness and diameter but decreases with column height. Inclined tubes in bundled columns showed improved buckling resistance over vertical ones. Results were verified against standard steel design guidelines to assess their predictive accuracy.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • ;;오동훈;;정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

선체곡판의 압축최종강도 설계식의 개발 (The Development of Ultimate Compressive Strength for Ship Curved Plates)

  • 박영일;권용우;백점기;이제명;고재용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.101-109
    • /
    • 2004
  • Ship structures is thin-walled structures and she has lots of curved platings. In these days, lots different kinds of closed-formulas are development for ultimate strength of flat plate but for curved panels, there are not enough study or papers for this field. In this study, the ultimate strength characteristics for ship curved plates are studied. The ship plating is generally subjected to combined in-plane and lateral pressure loads. In-plane loads included biaxial compression/tension and edge shear. This is first report about the developing of ultimate compressive strength for ship curved plating. A closed-form formula for predicting the ultimate compressive strength of curved plates are empirically derived by curve fitting based on the computed results. The results and insights developed in the present study will be useful for damage tolerant design of curved plated structures.

  • PDF