• 제목/요약/키워드: Thin walled beam

검색결과 234건 처리시간 0.021초

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석 (Structural Behavior of Thin-Walled, Pretwisted Composite Beams)

  • 박일주;홍단비;정성남
    • Composites Research
    • /
    • 제20권6호
    • /
    • pp.15-20
    • /
    • 2007
  • 본 연구에서는 혼합 보 이론을 이용하여 초기 비틀림 각을 갖는 박벽 복합재료 보에 대한 정적 거동 해석을 수행하였다. 보 해석 모델은 복합재료의 연계특성 및 박벽 두께효과, 그리고 비틀림 워핑을 고려하고 있다. 보의 인장-굽힘-비틀림 정적 거동에 대한 혼합적인 요소를 효과적으로 고려함과 동시에 보의 이론 전개를 위해 Reissner의 반보족에너지 함수를 도입하였다. 초기 비틀림 각의 도입에 따른 굽힘 및 비틀림 관련 워핑함수를 특별한 가설에 의존하지 않고 엄밀하게 유도하였다. 개발된 보 이론의 신뢰성을 제고하기 위한 일환으로 탄성적으로 연계된 복합재료 보에 대해 정적 구조해석을 수행하였으며, 해석 결과를 기존의 이론 및 유한요소 해석결과와 비교하여 그 타당성을 확보하였다.

복합재 박막 구조물의 압축강도 예측 (Predicting the Compressive Strength of Thin-walled Composite Structure)

  • 김성준;이동건
    • 한국항공운항학회지
    • /
    • 제27권2호
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

이축 대칭단면을 갖는 박벽 원형아치의 면외좌굴해석 (Out-of-plane Buckling Analysis of Doubly Symmetric Thin-walled Circular Arch)

  • 김문영;민병철;김성보
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.509-523
    • /
    • 1998
  • 본 연구에서는 이축 대칭단면을 갖는 박벽 원형아치의 안정성해석을 수행할 수 있는 유한요소 이론 및 엄밀해를 제시하기 위하여, 가상일의 원리를 이용한 3차원 연속체의 운동방정식을 제시한다. 박벽단면의 구속된 비틂(restrained warping)효과를 고려하는 박벽 곡선보의 변위장을 도입하고 이를 연속체의 운동방정식에 대입하여 단면에 대해 적분함으로써 박벽 곡선보의 운동방정식을 유도한다. 단순지지되고 이축 대칭단면을 갖는 박벽 곡선보의 면외좌굴에 대한 엄밀해를 제시하고 박벽 곡선보를 유한요소로 분할하여 요소의 변위장을 요소 변위벡터에 관한 3차의 Hermitian 다항식으로 나타내어 운동방정식에 대입함으로써 탄성 강도행렬과 기하학적 강도행렬을 유도한다. 또한 본 연구에서 얻어진 엄밀해와 박벽 곡선보요소를 이용한 유한요소해석결과를 다른 연구자들의 결과 및 직선 박벽보 요소를 이용한 해석결과와 비교 검토를 함으로써 분 연구의 타당성을 입증한다.

  • PDF

복합재료 H형 단면 보의 자유진동 해석 (Free Vibration Analysis of Composite H-Type Cross-section Beams)

  • 김성균;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.492-501
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. The vibrational characteristics of a composite thin-walled beam exhibiting the circumferentially asymmetric stiffness system(CAS) and the circumferentially uniform stiffness system(CUS) are exploited in connection with the bending-transverse shear coupling and the bending-twist coupling resulting from directional properties of fiber reinforced composite materials.

Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • 제33권1호
    • /
    • pp.95-107
    • /
    • 2009
  • A method for vibration analysis of asymmetric shear wall and Thin walled open section structures is presented in this paper. The whole structure is idealized as an equivalent bending-warping torsion beam in this method. The governing differential equations of equivalent bending-warping torsion beam are formulated using continuum approach and posed in the form of simple storey transfer matrix. By using the storey transfer matrices and point transfer matrices which consider the inertial forces, system transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary conditions. The structural properties of building may change in the proposed method. A numerical example has been solved at the end of study by a program written in MATLAB to verify the presented method. The results of this example display the agreement between the proposed method and the other valid method given in literature.

비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론 (The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending)

  • 김윤영;김영규
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.