• Title/Summary/Keyword: Thin walled beam

Search Result 234, Processing Time 0.031 seconds

Curved Beam Theory Based On Centroid-Shear Center Formulation (도심-전단중심 정식화를 이용한 개선된 곡선보이론)

  • Kim Nam-Il;Kyung Yong-Soo;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1033-1039
    • /
    • 2006
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to tl1e solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

  • PDF

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam (대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF

Exact Free Vibration Analysis of Straight Thin-walled Straight Beams (직선 박벽보에 대한 엄밀한 자유진동해석)

  • 김문영;윤희택;나성훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.358-365
    • /
    • 2000
  • For the general case of loading conditions and boundary conditions, it is very difficult to obtain closed form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. In consequence, most of previous finite element formulations are introduce approximate displacement fields to use shape functions as Hermitian polynomials, and so on. The Purpose of this study is to presents a consistent derivation of exact dynamic stiffness matrices of thin-walled straight beams, to be used ill tile free vibration analysis, in which almost types of boundary conditions are exist An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element of nonsymmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequency is evaluated for the thin-walled straight beam structure, and the results are compared with analytic solutions in order to verify the accuracy of this study.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns (전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬)

  • Yoon Hee-Taek;Park Young-Kon;Kim Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator (끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composite thin-walled beam with a tip mass.

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy logic and Piezoelectric Sensors and Actuator (끝단 질량을 가진 복합재료 얇은 벽보의 퍼지이론과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;송오섭;민준식;강호식;정남희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.950-957
    • /
    • 2003
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composit thin-walled beam with a tip mass.

  • PDF

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Beam-Columns and Frames (박벽 공간 보-기둥과 뼈대구조의 자유진동 및 안정성 해석을 위한 일반이론)

  • 김성보;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.239-246
    • /
    • 1997
  • The general formulation of free vibration and stability analysis of unsymmetric thin-walled space frames and beam-columns is presented. The kinetic and total potential energy is derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF