• Title/Summary/Keyword: Thin membrane

Search Result 522, Processing Time 0.027 seconds

역삼투막의 제조 및 최근 동향

  • 구자영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.09a
    • /
    • pp.1-30
    • /
    • 1998
  • 1. RO History 2. Asymmetric Membranes by Phase Inversion 3. Thin Film Composite (TFC) Membrane 4. Structure and Property Relationship of TFC Membrane 5. Membrane Materials 6. Tranport Mechanism(Model) 7. Membrane Characters in Separation Process 8. Concentration Polarization and Fouling Phenomenon 9. RO Membrane Module Configuration and System Design 10. Futrue Trend in RO Industry

  • PDF

Review on Graphene Oxide-based Nanofiltration Membrane (산화그래핀 기반 나노여과막의 최신 연구동향)

  • Kim, Dae Woo
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.130-139
    • /
    • 2019
  • Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.

Study of Surface Properties on Fouling Resistance of Reverse Osmosis Membranes (역삼투 분리막 표면 특성의 내오염성 상관 관계 연구)

  • 김노원
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • The primary objective of this study is to elucidate the contribution of the electrostatic and molecula structural properties of an active layer of the thin film compsite (TFC) membranes to fouling tendency. The studies of surface morphology and surface charge were very effective in understanding fouling behaviors of the reverse osmosis (RO) membranes which were the thin film composite type of ployamide. Results of microscopic morphology analyzed by atomic force microscopy (AFM) and surface charge analyzed by electrokinetic analyzer (EKA) showed important factors affecting the fouling of RO membranes. The active layer of the composite membrane possessing realtively neutral streaming charge and less roughness provided a RO membrane with slowly decreasing flux.

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Thin Films and Their Application

  • Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • The thermomechanical behaviors of SMA thin film actuator and their application are investigated. The numerical algorithm of the 2-D SMA thermomechanical constitutive equation is developed and implemented into the ABAQUS finite element program by using the user defined material (UMAT) subroutine. To verify the numerical algorithm of SMAs, the results are compared with experimental data. For the application of SMA thin film actuator, the methodology to maintain the precise configuration of inflatable membrane structure is demonstrated.

Fabrication and Characteristics of Hot-Film Type Micro-flowsensors integrated with RTD (측온저항체 온도센서가 집적화된 발열저항체형 마이크로 유량센서의 제작 및 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.612-616
    • /
    • 2000
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD(resistance thermometer device) and micro-heater on the Si membrane in which MgO thin-film was used as medium layer in order to improve adhesion of Pt thin-film to SiO$_2$layer. The MgO layer improved adhesion of Pt thin-film to SiO$_2$layer without any chemical reactions to Pt thin-film under high annealing temperatures. Output voltages increased due to increase of heat-loss from sensor to external. The output voltage was 82 mV at $N_2$flow rate of 2000 sccm/min heating power of 1.2 W. The response time($\tau$:63%) was about 50 msec when input flow was stepinput

  • PDF

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal

  • Wang, Xiaoping;Li, Nana;Zhao, Yu;Xia, Shengji
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.