• Title/Summary/Keyword: Thin membrane

Search Result 524, Processing Time 0.027 seconds

The Study of membrane structure for FBAR and the deposition of ZnO piezoelectric thin film (ZnO압전박막을 이용한 FBAR에 대한 연구)

  • Lim, Seok-Jin;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.358-361
    • /
    • 2002
  • 체적파 박막형 공진기 (FBAR: Film Bulk Acoustic wave Resonator)소자를 제조하여, 박막의 c축 우선 배향성을 조절하는 것이 FBAR 소자 특성을 확인하였다. 본 연구에서는 MEMS 공정에 의해 Membrane 구조의 FBAR(Film Bulk Acoustic wave Resonator) 소자를 구현하고자 하였다. 이를 위해 Si 기판을 Back-etching 하여 membrane 구조를 제작하였고 압전층으로 ZnO을 Sputtering 공정에 의해 증착 후, 공정 조건에 따른 우선 배향성을 관찰하였다.

  • PDF

Home-built Solid-state NMR Probe for Membrane Protein Studies

  • Kim, Yong-Ae;Hwang, Jung-Hyun;Park, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1281-1283
    • /
    • 2003
  • Proteins in highly oriented lipid bilayer samples are useful to study membrane protein structure determination. Planar lipid bilayers aligned and supported on glass slide were prepared. These stack of glass slide with planar lipid bilayers are not well fit for commercial solid-state NMR probe with round coil. Therefore, homebuilt solid-state NMR probe was built and used for a stack of thin glass plates and RF coil is wrapping directly around the flat square sample. The overall filling factor of the coil is much better and the large surface area enhances the extent to orientation by providing uniform environments for the phospholipids and the high ratio of circumference to area reduces edge effects. $^1H\;and\;^{15}N$ double resonance probe for 400 MHz NMR (9.4T) with a flat coil (coil size: 11 mm ${\times}$ 20 mm ${\times}$ 4 mm) is constructed and tested.

Langmuir-Blodgett Methods and Photelectronic Devices (Langmuir Blodgett법에 의한 광전자소자)

  • 신동명
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 1991
  • This paper describes the necessity and utility of Langmuir-Blodgett (L-B) methods in developing molecular electronic devices. It also covers the application area and limitations of the methods. With L-B methods, the membrane thickness can be controlled in a range of 50 nm and 1000 nm depending on nature of the materials and layering methods. The molecular arrangement within the membrane can be altered by altering the surface pressure and nature of the layering materials. Such a variation can be altered by altering the surface pressure and nature of the layering materials. Such a variation can offer a new application of the methods to the future electronic devices. More over 2nd and 3rd nonlinearity generated in the nonsymmetric thin membrane will be used in the development of the optoelectronic devices.

  • PDF

The Deposition Characterization of DLPC Lipid Membrane Fabricated by Moving wall Type LB Method (Moving wall형 LB법에 의하여 제작된 DLPC 지질막의 누적특성)

  • 이우선;최창주;정용호;김남오;이경섭;장의구;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.548-554
    • /
    • 1997
  • We fabricated the sample of ultra thin lipid membrane(L-$\alpha$-DLPC) by LB method. The $\pi$-A isotherm of the DLPC was measured at the air-water interface varying with the compressing speed and amounts of solutions for spreading. For the good property of lipid monolayer film, it was necessary to prepare at the lower speed of compressing, with an appropriate volume of solutions for spreading. Absorption, transmitance and intensity with the UV spectrophotometer were measured. The Z-type multilayers showed good characteristics better than Y-type. So we found building-up of structurally high quality LB films is essential to study properties of the films and to get reproducible data.

  • PDF

Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter

  • Ghadiri, Leila;Bozorg, Ali;Shakeri, Alireza
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.417-429
    • /
    • 2019
  • Poly Sulfone nanofibers were electrospun to fabricate membranes of different characteristics. To fabricate the fiber mats, polymer concentration, flowrate, and current density were determined as the most influencing factors affecting the overall performance of the membranes and studied through Response Surface Methodology. The Box-Behnken Design method (three factors at three levels) was used to design, analyze, and optimize the parameters to achieve the best possible performance of the electrospun membranes in forward osmosis process. Also, internal concentration polarization that characterizes the efficiency of the forward osmosis membranes was determined to better assess the overall performance of the fabricated electrospun membranes. Water flux to reverse salt flux was considered as the main response to assess the performance of the membranes. As confirmed experimentally, best membrane performance with the minimal structural parameter value could be achieved when predicted optimal values were used to fabricate the membranes through electrospinning process.

Development of apparatus for Single-sided Wet Etching and its applications in Corrugated Membrane Fabrication

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • Wet etching is more economical than dry etching and provides a uniform etching depth regardless of wafer sizes. Typically, potassium hydroxide (KOH) and tetra-methyl-ammonium hydroxide (TMAH) solutions are widely used for the wet etching of silicon. However, there is a limit to the wet etching process when a material deposited on an unetched surface reacts with an etching solution. To solve this problem, in this study, an apparatus was designed and manufactured to physically block the inflow of etchants on the surface using a rubber O-ring. The proposed apparatus includes a heater and a temperature controller to maintain a constant temperature during etching, and the hydrostatic pressure of the etchant is considered for the thin film structure. A corrugation membrane with a diameter of 800 ㎛, thickness of 600 nm, and corrugation depth of 3 ㎛ with two corrugations was successfully fabricated using the prepared device.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors (MBR에서 간헐포기에 의한 오염저감 효과)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.276-286
    • /
    • 2015
  • The effects of relaxation and backwashing on fouling in ultrafiltration were investigated using full-scale membrane bioreactors (MBRs) which operated at a constant flux of 30 LMH. This paper also estimated the feasibility of using intermittent aeration strategies for minimizing the hydraulic resistance to filtration in comparison with the continuous aeration for running MBRs. Multiple cycles of filtration (14.5 min each) and relaxation (0.5 min each) were repeated. Similarly, a backwash was conducted by replacing a relaxation after each filtration cycle for the comparative performance test. The attached cake thickness on the membrane rapidly increased, caused by subsequent no aeration leading to easier combining with gel layer and the formation of heterogeneous layer on the membrane surface. During periodic backwashing, it is expected that gel and thin cake layer might sufficiently be removed by heterogeneous layer. After periodic backwashing, subsequent cake layer formation during time of no aeration was rapid than frequent no aeration, acting as a prefilter and preventing further irreversible fouling. Based on the Pearson correlation analysis, overall period fouling (dTMP/min) and average of all cycles (dTMP/min) were strongly correlated with the on-off period of aeration for operating MBRs.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

High-Performance and Fabrication of Graphene-based Flexible Supercapacitor

  • Ra, Eun Ju;Han, Jae Hee;Kim, Kiwoong;Lee, Sun Suk;Kim, Tae-Ho;An, Ki-Seok;Lim, Jongsun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.442-442
    • /
    • 2014
  • Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, is one of the most promising energy-storage devices because of its high power density, super-high cycle life, and safe operation. We herein report a synthesis of graphene-based flexible films by kneading method. Thus, a device can be readily made by sandwiching a polymer membrane included ionic liquid electrolytes between two identical graphene-based flexible films. Devices made with these electrodes exhibit ultrahigh energy density values while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-energy, flexible electronics.

  • PDF