• 제목/요약/키워드: Thin insulating film

검색결과 192건 처리시간 0.028초

NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구 (A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3)

  • 오창섭;한창석
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.78-85
    • /
    • 2012
  • Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 박향숙;방진주;이기정;강종욱;홍광준
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화 (Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering)

  • 김영은;노영수;박동희;최지원;채근화;김태환;최원국
    • 한국진공학회지
    • /
    • 제19권6호
    • /
    • pp.475-482
    • /
    • 2010
  • NiO 산화물 타겟을 이용한 RF 마그네트론 스퍼터 방법으로 유리 기판 위에 NiO 박막을 Ar 가스만을 사용하여 증착하였으며, 증착 온도에 따라 NiO 박막 특성에 미치는 영향을 조사하였다. XRD 측정으로부터 증착된 박막의 결정구조는 $200^{\circ}C$ 이하에서 (111) 면의 우선 배향성으로 보이다가 $350^{\circ}C$ 이상에서 (220) 면의 우선 배향성을 가지는 다결정 입방구조임을 확인하였다. NiO 박막의 전기적 특성의 변화는 기판의 온도가 $200^{\circ}C$까지는 $10^5\;{\Omega}cm$의 부도체에 가까운 높은 비저항을 보였고 기판의 온도가 $300^{\circ}C$ 이상에서는 $10^{-1}{\sim}10^{-2}{\Omega}cm$의 도체의 특성을 보이는 낮은 비저항으로 감소하는 Mott-Insulator Transition(MIT) 현상을 관측하였다. NiO 박막 내의 증착 온도 변화에 따른 ${\sim}10^7$ 정도의 큰 비저항 변화를 결정성, 결정립의 변화 및 밴드 갭의 변화 등으로 설명하였다.

Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 점결함 (Growth and point defect for $CdGa_2Se_4$single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2007
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C\;and\;420^{\circ}C$, respectively. After the as-grown single crystal $CdGa_2Se_4$ thin films were annealed in Cd-, Se-, and Ga -atmospheres, the origin of point defects of single crystal $CdGa_2Se_4$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd},\;V_{Se},\;Cd_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cd-atmosphere converted single crystal $CdGa_2Se_4$ thin films to an optical p-type. Also, we confirmed that Ga in $CdGa_2Se_4$/GaAs did not form the native defects because Ga in single crystal $CdGa_2Se_4$ thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy(HWE)법에 의해 성장된 $CdIn_2S_4$ 단결정 박막 성장의 광학적 특성 (The Effect of Thernal Annealing and Growth of $CdIn_2S_4$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 윤석진;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.129-130
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. After the as-grown $CdIn_2S_4$ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of $CdIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cd}$, $V_s$, $Cd_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment m the S-atmosphere converted $CdIn_2S_4$ single crystal thin films to an optical p-type. Also. we confirmed that In in $CdIn_2S_4$/GaAs did not form the native defects because In in $CdIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 CuInse2 단결정 박막 성장과 열처리 효과 (Growth and Effect of Thermal Annealing for CuInse2 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 이관교;홍광준
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.755-763
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInse_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInse_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C\;and\;410^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $CuInse_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)=1.1851 eV - (8.99{\times}10^{-4} eV/K)T^2/(T+153 K)$. After the aa-grown $CuInse_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInse_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cu},\;V_{Se},\;Cu_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInse_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInse_2$/GaAs did not form the native defects because In in $CuInse_2$ single crystal thin films existed in the form of stable bonds.

Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성 (Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 이상열;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막 성장과 열처리 효과 (The Effect of Thermal Annealing and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 윤석진;정태수;이우선;박진성;신동찬;홍광준;이봉주
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.871-880
    • /
    • 2003
  • Single crystal CuAlSe$_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410 C with hot wall epitaxy (HWE) system by evaporating CuAlSe$_2$ source at 680 C. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X -ray diffraction (DCXD). The carrier density and mobility of single crystal CuAlSe$_2$ thin films measured with Hall effect by van der Pauw method are 9.24${\times}$10$\^$16/ cm$\^$-3/ and 295 cm$^2$/V $.$ s at 293 K, respectively. The temperature dependence of the energy band gap of the CuAlSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 2.8382 eV - (8.86 ${\times}$ 10$\^$-4/ eV/K)T$^2$/(T + 155K). After the as-grown single crystal CuAlSe$_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal CuAlSe$_2$ thin films has been investigated by PL at 10 K. The native defects of V$\_$cd/, V$\_$se/, Cd$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal CuAlSe$_2$ thin films to an optical n-type. Also, we confirmed that Al in CuAlSe$_2$/GaAs did not form the native defects because Al in single crystal CuAlSe$_2$ thin films existed in the form of stable bonds.

광발광 측정으로부터 얻어진 $ZnIn_2Se_4$ 박막의 열처리 효과 (Effect of thermal annealing for $ZnIn_2Se_4$ thin films obtained by photoluminescience measurement)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.120-121
    • /
    • 2009
  • Single crystalline $ZnIn_2Se_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $400^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating, $ZnIn_2Se_4$ source at $630^{\circ}C$. After the as-grown $ZnIn_2Se_4$ single crystalline thin films was annealed in Zn-, Se-, and In-atmospheres, the origin of point defects of $ZnIn_2Se_4$single crystalline thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of $V_{Zn}$, $V_{Se}$, $Zn_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted $ZnIn_2Se_4$ single crystalline thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2Se_4$/GaAs did not form the native defects because In in $ZnIn_2Se_4$ single crystalline thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy(HWE)법에 의해 성장된 $AgGaS_2$ 단결정 박막의 특성 (Characterization for $AgGaS_2$ single crystal thin film grown by hot wall epitaxy)

  • 이관교;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.101-102
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-Insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C$ and $440^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4} eV/K)T^2/(T+332 K)$. After the as-grown $AgGaS_2$ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K.

  • PDF