• Title/Summary/Keyword: Thin film electrode

Search Result 925, Processing Time 0.027 seconds

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Frequency Characteristics of a FBAR using ZnO Thin Film (ZnO 압전박막을 이용한 FBAR의 주파수 응답특성)

  • Do, Seung-Woo;Jang, Cheol-Yeong;Choi, Hyun-Chul;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.94-97
    • /
    • 2003
  • This study uses ZnO thin film as a piezoelectric material and Pt as bottom electrode for FBAR (film bulk acoustic resonator) device. ZnO thin film and Pt were deposited by RF-magnetron sputtering method. ZnO thin film and Pt were oriented to c-axis. Top electrode Al was deposited by thermal evaporation. The membrane was formed of bulk micromachining. The FBAR was evaluated by XRD, SEM and electrical characterization. The resonant frequency was measured by HP 8753C Network Analyzer. A fabricated FBAR device exhibited a resonant frequency of 700 MHz ~ 1.5 GHz. When bottom electrode and top electrode thickness were fixed, the resonant frequency was increased as decreasing ZnO thin film thickness.

  • PDF

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Crystallographic Relationships of (Ba, Sr) $TiO_3$Thin Film Prepared by Metal-Organic Chemical Vapor Deposition on (111) Textured Pt Electrode

  • Yoo, Dong-Chul;Lee, Jeong-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1126-1129
    • /
    • 2000
  • The crystallographic orientations of $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) thin film deposited by a metal-organic chemical vapor deposition on (111) textured Pt electrode were studied with a transmission electron microscopy. The fully crystallized BST thin film (50nm) has (100) and (110) preferred orientations. A high resolution transmission electron microscopy study has revealed the crystallographic orientation relationships between BST thin film and Pt electrode. These relationships explained the preferred orientation of BST film on (111) textured Pt electrode. With these results, we could represent the atomic arrangement at the BST/Pt interface.e.e.

  • PDF

High Conductive Transparent Electrode of ITO/Ag/i-ZnO by In-Line Magnetron Sputtering Method (인-라인 마그네트론 스퍼터링 방법에 의한 고전도성 ITO/Ag/i-ZnO 투명전극)

  • Kim, Sungyong;Kwon, Sangjik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • It has increased several decades in the field of Indium Tin Oxide (ITO) transparent thin film, However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials[1]. So far, in order to overcome this disadvantage, we show that a transparent ITO/Ag/i-ZnO multilayer thin film electrode would be more cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report the properties of ITO/Ag/i-ZnO multilayer thin film by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\Box}$ at same visible light transmittance. (minimal point $5.2{\Omega}/{\Box}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

Effects of Heterostructure Electrodes on the Reliability of Ferroelectric PZT Thin Film (강유전체 PZT박막의 신뢰도에 미치는 헤테로구조 전극의 영향에 대한 연구)

  • Lee, Byoung-Soo;Lee, Bok-Hee;Lee, Duch-Chool
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.14-19
    • /
    • 2003
  • The effect of the Pt electrode and the $Pt-IrO_2$ hybrid electrode on the performance of ferroelectric device was investigated. The modified Pt thin films with non-columnar structure significantly reduced the oxidation of TiN diffusion barrier layer, which rendered it possible to incorporate the simple stacked structure of Pt/TiN/poly-Si plug. When a $Pt-IrO_2$ hybrid electrode is applied, PZT thin film properties are influenced by the thickness and the partial coverage of the electrode layers. The optimized $Pt-IrO_2$ hybrid electrode significantly enhanced the fatigue properties of the PZT thin film with minimal leakage current.

A Study on the Electrode Effect of As-Te-Si-Ge Non-Crystalline Thin film Switching Devices (As-Te-Si-Ge 비정질박막 스위칭 소자의 전극영향에 관한 연구)

  • 박창엽;정홍배
    • 전기의세계
    • /
    • v.25 no.1
    • /
    • pp.104-107
    • /
    • 1976
  • The switching characteristics of Non-crystalline As-Te-Si-Ge thin film device using Ag, In and Al metal for electrode, has been investigated. Threshold voltage and holding current of each sandwich type device varied due the to formation of the potential barrier in between non crystalline solid and electrode interface.

  • PDF

A Study on the Deposition Characteristics of ZnO Piezoelectric Thin film Bulk Acoustic Resonator (FBAR 응용을 위한 ZnO 압전 박막의 증착 특성에 관한 연구)

  • 최승혁;김종성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.716-722
    • /
    • 2003
  • ZnO thin films were deposited on Al and Pt electrodes by an RF reactive sputtering system for the fabrication of FBAR (film bulk acoustic wave resonator), and the effect of thermal treatment temperature on their c-axis preferred orientation was investigated. SEM experiments show that columnar structure of ZnO thin films were grown with c-axis normal to electrode material, and XRD experiments show that both ZnO films were grown with (002) plane preferred orientation, but larger diffraction peak was observed with Pt electrode. The peak intensity increased with higher thermal treatment temperature, but c-axis preferred orientation was diminished. The surface roughness of Al thin film was higher than that of Pt, and these affect the surface roughness of ZnO film deposited on the electrode. Though the preferred orientation with respect to Pt(111) plane was improved with higher thermal treatment temperature, this could not improve the c-axis orientation of ZnO film.

Characteristics of PZT thin films with varying the bottom-electrodes and buffer layer (PZT 박막제조시 하부전극과 buffer층에 따른 박막특성에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 1996
  • We adopted the $Pt/SiO_{2}/Si$ and the $Ir/SiO_{2}/Si$ substrates of which buffer layer is $PbTiO_{3}$ to improve electrode and interfacial properties of PZT thin film deposited by reactive sputtering method using metal target in this study. We got PZT thin film to have highly oriented(100) structure and good crystallinity using buffer layer in Pt bottom-electrode, though randomly oriented PZT thin film was obtained without buffer layer. Although great improvement of PZT phase formation on Ir bottom-electrode with buffer layer was not observed, we observed the increase of remennant polarization and the decrease of coercive field compared with properties of PZT thin films on the Pt bottom-electrode. So we got the results of the increase of dielectric constant using buffer layer on fabrication of PZT thin film and the better dielectric properties in PZT thin film using Ir bottom-electrode compared with that using Pt bottom-electrode.

  • PDF