• Title/Summary/Keyword: Thin Film Solar Cell

Search Result 622, Processing Time 0.025 seconds

A Study on the Electrical and Optical Properties of CdS Thin Film by Annealing for Solar Cell (태양전지용 CdS 박막의 열처리에 따른 전기 및 광학적 특성에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.999-1003
    • /
    • 2009
  • In this paper, CdS thin films well-known to window layer for solar cell were fabricated by means of vacuum evaporation method treated with different substrate heating. During film fabrication the substrates were heated at 50, 75 and $100^{\circ}C$, respectively. The thin films were then annealed at $200^{\circ}C$ in atmosphere, and the electrical and optical properties were investigated. By annealing, the hexagonal structure of films was changed into cubic structure. Their transmissivity was also increased and moved to longer wave band. It was shown that the film fabricated with the substrate heat-treated at $50^{\circ}C$ had the lowest resistivity.

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

Electrical and Optical Characteristics of ZnO:Al Films Prepared by rf Magnetron Sputtering for Thin Film Solar Cells Application (rf 마그네트론 스파터법에 의해 제조된 태양전지용 ZnO:Al 박막의 전기 광학적 특성)

  • Jeon, Sang-Won;Lee, Jeong-Chul;Park, Byung-Ok;Song, Jin-Soo;Yoon, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • ZnO:Al(AZO) films prepared by rf magnetron sputtering on glass substrate and textured by post-deposition chemical etching were applied as front contact and back reflectors for ${\mu}c$-Si:H thin film solar cells. For the front transparent electrode contact, AZO films were prepared at various working pressures and substrate temperature and then were chemically etched in diluted HCl(1%). The front AZO films deposited at low working pressure(1 mTorr) and low temperature ($240^{\circ}C$) exhibited uniform and high transmittance ($\geq$80%) and excellent electrical properties. The solar cells were optimized in terms of optical and electrical properties to demonstrate a high short-circuit current.

Fabrication of CuInSe2 Absorber Layers for Thin Film Solar Cells by Doctor Blade Coating and Selenization using Solution Precursor (용액 전구체의 닥터블레이드 코팅 및 셀렌화 열처리를 통한 CuInSe2 박막 태양전지용 광흡수층 제조)

  • Kim, Chae-Woong;Ahn, Se-Jin;Yun, Jae-Ho;Lee, Jeong-Chul;Yoon, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.294-297
    • /
    • 2008
  • In this paper, a novel non-vacuum technique is described for the fabrication of a $CuInSe_2$ (CIS) absorber layer for thin film solar cells using a low-cost precursor solution. A solution containing Cu- and Inrelated chemicals was coated onto a Mo/glass substrate using the Doctor blade method and the precursor layer was then selenized in an evaporation chamber. The precursor layer was found to be composed of CuCl crystals and amorphous In compound, which were completely converted to chalcopyrite CIS phase by the selenization process. Morphological, crystallographic and compositional analyses were performed at each step of the fabrication process by SEM, XRD and EDS, respectively.

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Fabrication and Characterization of Polycrystalline Silicon Solar Cells using Preferential Etching of Grain Boundaries (결정입계의 선택적 식각을 이용한 다결정 규소 태양전지의 제작과 특성)

  • Kim, Sang-Su;Kim, Cheol-Su;Lim, Dong-Gun;Kim, Do-Young;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1430-1432
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. To reduce these effects of the grain boundaries, we investigated various influencing factors such as preferential chemical etching of grain boundaries, grid design, transparent conductive thin film, and top metallization along grain boundaries. Pretreatment in $N_2$ atmosphere and gettering by $POCl_3$ and Al were performed to obtain polycrystalline silicon of the reduced defect density. Structural, electrical, and optical properties of solar cells were characterized. Improved conversion efficiencies of solar cell were obtained by a combination of Al diffusion into grain boundaries on rear side, fine grid finger, top Yb metal grid on Cr thin film of $200{\AA}$ and buried contact metallization along grain boundaries.

  • PDF

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF

Properties of the surface of the CIGS thin films after sulfurization (황화 열처리를 통한 CIGS 광흡수층의 표면 특성 변화 연구)

  • Kim, Ji Hye;Ko, Young Min;Larina, Liudmila;Ahn, Byung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.1-99.1
    • /
    • 2010
  • Many efforts on the surface sulfurization of $Cu(InGa)Se_2$ (CIGS)thin films have been reported as techniques to improve CIGS solar cell performance. We have investigated the sulfurization technique using the sulfur vapor. The co-evaporated $Cu(In,Ga)Se_2$ tin film was used for sulfurization. A thin $Cu(In,Ga)(S,Se)_2$ layer was grown on the surface of the CIGS thin film after high-temperature annealing in sulfur vapor. The structural and compositional properties of the thin films were studied by XRD, EDS and AES analysis. The obtained results revealed that the surface modification technique is promising method to S incorporated into CIGS absorber.

  • PDF

Development of Inorganic Metal Oxide based Hole-Transporting Layer for High Efficiency Perovskite Solar Cell (고효율 페로브스카이트 태양전지용 무기 금속 산화물 기반 정공수송층의 개발)

  • Lee, Haram;Mai, Cuc Thi Kim;Jang, Yoon Hee;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.60-65
    • /
    • 2020
  • In perovskite solar cells with planar heterojunction configuration, selection of proper charge-transporting layers is very important to achieve stable and efficient device. Here, we developed solution processible Cu doped NiOx (Cu:NiOx) thin film as a hole-transporting layer (HTL) in p-i-n structured methylammonium lead trihalide (MAPbI3) perovskite solar cell. The transmittance and thickness of NiOx HTL is optimized by control the spin-coating rate and Cu is additionally doped to improve the surface morphology of undoped NiOx thin film and hole-extraction properties. Consequently, a perovskite solar cell containing Cu:NiOx HTL with optimal doping ratio of Cu exhibits a power conversion efficiency of 14.6%.