• 제목/요약/키워드: Thin Film Amorphous Silicon Solar Cell

검색결과 59건 처리시간 0.028초

KS C 8562 평가를 통한 CIGS 태양광모듈의 출력 거동 분석 (Current-Voltage Measurement Behavior of the CIGS Solar Module through the Evaluation of KS C 8562 Standard)

  • 김경수
    • Current Photovoltaic Research
    • /
    • 제12권2호
    • /
    • pp.41-47
    • /
    • 2024
  • CIGS solar cells are thin film solar cells that have excellent light absorption coefficient and can be manufactured with high efficiency through the use of low materials. In Korea, they must pass KS certification for home and commercial installation. KS C 8562 is a standard for evaluating the durability of CIGS and thin film amorphous silicon solar modules and deals with contents such as light, temperature, humidity, and mechanical durability. Unlike general crystalline silicon solar modules, the CIGS solar module has a different behavior of output change through these environmental tests, so if it shows 90% or more of the rated output suggested by the manufacturer after the final test, it is judged to be a suitable product. In this paper, the output before and after individual tests was measured through the test method of KS C 8562 to observe the output change and to discover the vulnerabilities of the CIGS solar module when exposed to various environments. Through this, it was confirmed that humidity exposure was the most vulnerable and that it had output recovery characteristics for light (visible light and ultraviolet rays). This study attempted to present the output behavior characteristics and data of the CIGS module at the time when the high efficiency thin film photovoltaic module market is expected to be created in the future.

한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성 (Power Output in Various Types of Solar Panels in the Central Region of Korea)

  • 장효식
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.

비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정 (Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film)

  • 박지용;이대건;문승재
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.1019-1023
    • /
    • 2012
  • 본 연구에서는 새로운 알루미늄 유도 결정화 공정을 제안하였다. 알루미늄 박막에 직접 3 A의 정전류를 인가하여 $1cm{\times}1cm$ 넓이의 두께 200 nm 비정질 실리콘 박막을 수십 초 내에 결정화하는 방법이다. 결정화된 다결정 실리콘 박막은 520 $cm^{-1}$ 에서의 라만 분광 피크를 통해 확인할 수 있었다. 공정 후, 알루미늄이 식각된 다결정 실리콘 박막은 다공성 구조임을 SEM 을 통하여 확인할 수 있었다. 또 한, 이차이온질량분석(secondary ion mass spectroscopy)에서 알루미늄 농도가 $10^{21}cm^{-3}$으로 헤비 도핑된 것을 확인 할 수 있었으며, 실시간으로 측정된 열화상 카메라의 결과를 통해 결정화는 820 K 근처에서 일어나는 것을 확인할 수 있었다.

실리콘 태양전지의 기술현황 및 전망 (Technology Trends and Prospects of Silicon Solar Cells)

  • 박철민;조재현;이영석;박진주;주민규;이윤정;이준신
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구 (Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication)

  • 정혜정;이종호;부성재
    • 한국결정성장학회지
    • /
    • 제20권6호
    • /
    • pp.254-261
    • /
    • 2010
  • 본 연구에서는 다결정 실리콘 태양전지 응용을 위한 다결정 실리콘 씨앗층의 제조와 그의 특성에 관한 연구를 수행하였다. 다결정 실리콘 씨앗층은 glass/Al/$Al_2O_3$/a-Si 구조를 이용하여 aluminum-induced layer exchange(ALILE) 고정으로 제조하였으며, 자연산화막부터 50 nm까지 다양한 크기로 $Al_2O_3$ 막두께를 변화시켜 알루미늄 유도 결정화 공정에서 막의 두께가 결정화 특성 및 결정결함, 결정크기에 미치는 영향에 대하여 조사하였다. 연구결과, ALILE 공정으로 생성된 다결정 실리콘막의 결함은 $Al_2O_3$ 막의 두께가 증가할수록 함께 증가한 반면, 결정화 정도와 결정입자의 크기는 $Al_2O_3$막의 두께가 증가할수록 감소하였다. 본 실험에서는 16 nm 두께 이하의 앓은 $Al_2O_3$ 막의 구조에서 평균 약 $10\;{\mu}m$ 크기의 sub-grain 결정립을 얻었으며, 결정성은 <111> 방향의 우선 배향성 특성을 보였다.

Plasma Textured Glass Surface Morphologies for Amorphous Silicon Thin Film Solar Cells-A review

  • Hussain, Shahzada Qamar;Balaji, Nagarajan;Kim, Sunbo;Raja, ayapal;Ahn, Shihyun;Park, Hyeongsik;Le, Anh Huy Tuan;Kang, Junyoung;Yi, Junsin;Razaq, Aamir
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.98-103
    • /
    • 2016
  • The surface morphology of the front transparent conductive oxide (TCO) films plays a vital role in amorphous silicon thin film solar cells (a-Si TFSCs) due to their high transparency, conductivity and excellent light scattering properties. Recently, plasma textured glass surface morphologies received much attention for light trapping in a-Si TFSCs. We report various plasma textured glass surface morphologies for the high efficiency of a-Si TFSCs. Plasma textured glass surface morphologies showed high rms roughness, haze ratio with micro- and nano size surface features and are proposed for future high efficiency of a-Si TFSCs.

유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조 (Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates)

  • 장은석;김솔지;이지은;안승규;박주형;조준식
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지 ([ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells)

  • 이정철;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF