DOI QR코드

DOI QR Code

Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film

비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정

  • Received : 2012.05.31
  • Accepted : 2012.08.09
  • Published : 2012.10.01

Abstract

In this research, a novel direct-aluminum-heating-induced crystallization method was developed for the purpose of application to solar cells. By applying a constant current of 3 A to an aluminum thin film, a 200-nm-thick amorphous silicon (a-Si) thin film with a size of $1cm{\times}1cm$ can be crystallized into a polycrystalline silicon (poly-Si) thin film within a few tens of seconds. The Raman spectrum analysis shows a peak of 520 $cm^{-1}$, which verifies the presence of poly-Si. After removing the aluminum layer, the poly-Si thin film was found to be porous. SIMS analysis showed that the porous poly-Si thin film was heavily p-doped with a doping concentration of $10^{21}cm^{-3}$. Thermal imaging shows that the crystallization from a-Si to poly-Si occurred at a temperature of around 820 K.

본 연구에서는 새로운 알루미늄 유도 결정화 공정을 제안하였다. 알루미늄 박막에 직접 3 A의 정전류를 인가하여 $1cm{\times}1cm$ 넓이의 두께 200 nm 비정질 실리콘 박막을 수십 초 내에 결정화하는 방법이다. 결정화된 다결정 실리콘 박막은 520 $cm^{-1}$ 에서의 라만 분광 피크를 통해 확인할 수 있었다. 공정 후, 알루미늄이 식각된 다결정 실리콘 박막은 다공성 구조임을 SEM 을 통하여 확인할 수 있었다. 또 한, 이차이온질량분석(secondary ion mass spectroscopy)에서 알루미늄 농도가 $10^{21}cm^{-3}$으로 헤비 도핑된 것을 확인 할 수 있었으며, 실시간으로 측정된 열화상 카메라의 결과를 통해 결정화는 820 K 근처에서 일어나는 것을 확인할 수 있었다.

Keywords

References

  1. Spinella, C., Lombardo, S. and Priolo, F., 1998, "Crystal Grain Nucleation in Amorphous Silicon," Journal of applied physics, Vol. 84, pp. 5383-5414 https://doi.org/10.1063/1.368873
  2. Ishikawa, Y., Nakamura, A., Uraoka, Y. and Fuyuki, T., 2004, "Polycrystalline Silicon Thin Film for Solar Cells Utilizing Aluminum Induced Crystallization Method," Japanese journal of applied physics, Vol. 43, pp. 877-881. https://doi.org/10.1143/JJAP.43.877
  3. Lee, M., Moon, S., Hatano, M. and Grigoropoulos, C. P., 2001, "Ultra-Large Lateral Grain Growth by Double Laser Recrystallization of a-Si Films," Applied physics A, Vol. 73, pp. 317-322. https://doi.org/10.1007/s003390100874
  4. Kim, D.-H., Hong, W.-E., Ro, J.-S., Lee, C.-H. and Park, S., 2010, "In-Situ Observation of Phase Transformation in Amorphous Silicon During Joule- Heating Induced Crystallization Process," Thin Solid Films, Vol. 519, pp. 5516-5522.
  5. Van Gestel, D., Gordon, I. and Poortmans, J., 2011, "Metal Induced Crystallization of Amorphous Silicon for Photovoltaic Solar Cells," Physics Procedia, Vol. 11, pp. 196-199. https://doi.org/10.1016/j.phpro.2011.01.003
  6. Wang, Z. M., Wang, J. Y., Jeurgens, L. P. H. and Mittemeijer, E. J., 2008, "Thermodynamics and Mechanism of Metal-Induced Crystallization in Immiscible Alloy Systems: Experiments and Calculations on Al/a-Ge and Al/a-Si Bilayers," Physical review B, Vol. 77, pp. 045424-1-045424-15. https://doi.org/10.1103/PhysRevB.77.045424
  7. Hiraki, A., 1983, "Low Temperature Reactions at Si/Metal Interfaces; What is Going on at the Interfaces?," Surface Science Reports, Vol. 3, pp. 357-412. https://doi.org/10.1016/0167-5729(84)90003-7
  8. Gordon, I., Carnel, L., Van Gestel, D., Beaucarne, G., Poortmans, J., 2007, "8% Efficient Thin-Film Polycrystalline-Silicon Solar Cells Based on Aluminum- Induced Crystallization and Thermal CVD," Mechanism and Machine Theory, Vol. 15, No. 7, pp. 575-586.
  9. Kollias, K., Wang, H., Song, Y. and Zou, M., 2008, "Production of Superhydrophilic Surface by Aluminum-Induced Crystallization of Amorphous Silicon," Nanotechnology, Vol. 19, pp.465304-1-465304-6. https://doi.org/10.1088/0957-4484/19/46/465304
  10. Zou, M., Cai, L. and Doreya, S. P., 2006, "Self- Assembly of Aluminum-Induced Silicon Nanowires," Electrochemical and Solid-State Letters, Vol. 9, pp G133-G135. https://doi.org/10.1149/1.2172467
  11. Nair, R. P. and Zou, M., 2008, "Surface-Nano- Texturing by Aluminum-Induced Crystallization of Amorphous Silicon," Surface and Coatings Technology, Vol. 203, pp 675-679. https://doi.org/10.1016/j.surfcoat.2008.07.014
  12. Yang, M., Huang, D., Hao, P., Zhang, F., Hou, X. and Wang, X., 1994, "Study of the Raman Peak Shift and the Linewidth of Light‐Emitting Porous Silicon," Journal of Applied Physics, Vol. 75, pp 651-653. https://doi.org/10.1063/1.355808
  13. Nast, O., Puzzer, T., Koschier, L. M., Sproul, A. B., and Wenham, S. R., 1998, "Aluminum-Induced Crystallization of Amorphous Silicon on Glass Substrates Above and Below the Eutectic Temperature," Applied Physics Letters, Vol. 73, pp 3214-3216. https://doi.org/10.1063/1.122722
  14. Wang, J. Y., Wang, Z. M. and Mittemeijer, E. J., 2007, "Mechanism of Aluminum-Induced Layer Exchange upon Low-Temperature Annealing of Amorphous Si/Polycrystalline Al Bilayers," Journal of applied Physics, Vol. 102, pp. 113523-1-113523-9. https://doi.org/10.1063/1.2822275